No Arabic abstract
We present a new method that combines the results of an oscillation study made in optical and radio observations. The optical spectral measurements in photospheric and chromospheric lines of the line-of-sight velocity were carried out at the Sayan Solar Observatory. The radio maps of the Sun were obtained with the Nobeyama Radioheliograph at 1.76 cm. Radio sources associated with the sunspots were analyzed to study the oscillation processes in the chromosphere-corona transition region in the layer with magnetic field B=2000 G. A high level of instability of the oscillations in the optical and radio data was found. We used a wavelet analysis for the spectra. The best similarities of the spectra of oscillations obtained by the two methods were detected in the three-minute oscillations inside the sunspot umbra for the dates when the active regions were situated near the center of the solar disk. A comparison of the wavelet spectra for optical and radio observations showed a time delay of about 50 seconds of the radio results with respect to optical ones. This implies a MHD wave traveling upward inside the umbral magnetic tube of the sunspot. Besides three-minute and five-minute ones, oscillations with longer periods (8 and 15 minutes) were detected in optical and radio records.
We studied the emergence process of 42 active region (ARs) by analyzing the time derivative, R(t), of the total unsigned flux. Line-of-sight magnetograms acquired by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) were used. A continuous piecewise linear fitting to the R(t)-profile was applied to detect an interval, dt_2, of nearly-constant R(t) covering one or several local maxima. The averaged over dt_2 magnitude of R(t) was accepted as an estimate of the maximal value of the flux growth rate, R_MAX, which varies in a range of (0.5-5)x10^20 Mx hour^-1 for active regions with the maximal total unsigned flux of (0.5-3)x10^22 Mx. The normalized flux growth rate, R_N, was defined under an assumption that the saturated total unsigned flux, F_MAX, equals unity. Out of 42 ARs in our initial list, 36 event were successfully fitted and they form two subsets (with a small overlap of 8 events): the ARs with a short (<13 hours) interval dt_2 and a high (>0.024 hour^-1) normalized flux emergence rate, R_N, form the rapid emergence event subset. The second subset consists of gradual emergence events and it is characterized by a long (>13 hours) interval dt_2 and a low R_N (<0.024 hour^-1). In diagrams of R_MAX plotted versus F_MAX, the events from different subsets are not overlapped and each subset displays an individual power law. The power law index derived from the entire ensemble of 36 events is 0.69+-0.10. The rapid emergence is consistent with a two-step emergence process of a single twisted flux tube. The gradual emergence is possibly related to a consecutive rising of several flux tubes emerging at nearly the same location in the photosphere.
The velocity field in the lower solar atmosphere undergoes strong interactions with magnetic fields. Many authors have pointed out that power is reduced by a factor between two and three within magnetic regions, depending on frequency, depth, the radius and the magnetic strength of the flux tube. Many mechanisms have been proposed to explain the observations. In this work, SDO dopplergrams and magnetograms of 12 bipolar active regions ($beta$ARs) at a 45 second cadence, are used to investigate the relation between velocity fluctuations and magnetic fields. We show that there is an asymmetry within $beta$ARs, with the velocity oscillation amplitude being more suppressed in the leading polarities compared to the trailing polarities. Also, the strongest magnetic fields do not completely suppress the five-minute oscillation amplitude, neither in the spot innermost umbrae.
Solar active regions contain electric currents. Information on the distribution of currents is important for understanding the processes of energy release on the surface of the Sun and in the overlying layers. The paper presents an analysis of the probability density function (PDF) of the absolute value of the photospheric vertical electric current density ($|j_z|$) in 48 active regions before and after flares in 2010--2017. Calculation of $|j_z|$ is performed by applying the differential form of Amperes circuital law to photospheric vector magnetograms obtained from observations of the Helioseismic and Magnetic Imager (HMI) instrument onboard the Solar Dynamics Observatory (SDO). It has been established that for the studied active regions PDF($|j_z|$) is described by the Gauss function in the low-$|j_z|$ region ($|j_z| < 10110 pm 1321$ statampere/cm$^2$) and the decaying power-law function in the region of higher $|j_z|$ values. Also, for some active regions PDF($|j_z|$) can be described by the special kappa-function. The distributions of the parameters of the approximating functions are obtained using the least squares method. The average absolute value of the power-law function index is $3.69 pm 0.51$, and $3.99 pm 0.51$ of the kappa-function. No systematic changes in parameters during the flares are detected. An explicit connection between the parameters and the flare X-ray class, as well as with the Hale magnetic class of the active regions, is not found. Arguments are presented in favor of the suggestion that the Gaussian distribution in the low-value region of PDF($|j_z|$) represents noise in the data, while the power-law tail reflects the nature of electric currents in the solar active regions.
Aims. The main aim of the present analysis is to decipher (i) the small-scale bright features in solar images of the quiet Sun and active regions obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) and (ii) the ALMA correspondence of various known chromospheric structures visible in the H-alpha images of the Sun. Methods. Small-scale ALMA bright features in the quiet Sun region were analyzed using single-dish ALMA observations (1.21 mm, 248 GHz) and in an active region using interferometric ALMA measurements (3 mm, 100 GHz). With the single-dish observations, a full-disk solar image is produced, while interferometric measurements enable the high-resolution reconstruction of part of the solar disk, including the active region. The selected quiet Sun and active regions are compared with the H-alpha (core and wing sum), EUV, and soft X-ray images and with the magnetograms. Results. In the quiet Sun region, enhanced emission seen in the ALMA is almost always associated with a strong line-of-sight (LOS) magnetic field. Four coronal bright points were identified, while other small-scale ALMA bright features are most likely associated with magnetic network elements and plages. In the active region, in 14 small-scale ALMA bright features randomly selected and compared with other images, we found five good candidates for coronal bright points, two for plages, and five for fibrils. Two unclear cases remain: a fibril or a jet, and a coronal bright point or a plage. A comparison of the H-alpha core image and the 3 mm ALMA image of the analyzed active region showed that the sunspot appears dark in both images (with a local ALMA radiation enhancement in sunspot umbra), the four plage areas are bright in both images and dark small H-alpha filaments are clearly recognized as dark structures of the same shape also in ALMA.
Major solar flares are prone to occur in active region atmospheres associated with large, complex, dynamically-evolving sunspots. This points to the importance of monitoring the evolution of starspots, not only in visible but also in ultra violet (UV) and X-rays, in understanding the origin and occurrence of stellar flares. To this end, we perform spectral irradiance analysis on different types of transiting solar active regions by using a variety of full-disk synoptic observations. The target events are an isolated sunspot, spotless plage, and emerging flux in prolonged quiet-Sun conditions selected from the past decade. We find that the visible continuum and total solar irradiance become darkened when the spot is at the central meridian, whereas it is bright near the solar limb; UV bands sensitive to the chromosphere correlate well with the variation of total unsigned magnetic flux in the photosphere; amplitudes of EUV and soft X-ray increase with the characteristic temperature, whose light curves are flat-topped due to their sensitivity to the optically thin corona; the transiting spotless plage does not show the darkening in the visible irradiance, while the emerging flux produces an asymmetry in all light curves about the central meridian. The multi-wavelength sun-as-a-star study described here indicates that such time lags between the coronal and photospheric light curves have the potential to probe the extent of coronal magnetic fields above the starspots. In addition, EUV wavelengths that are sensitive to the transition-region temperature sometimes show anti-phased variations, which may be used for diagnosing plasmas around starspots.