We use a transfer-matrix method to study the localization properties of vibrations in a `mass and spring model with simple cubic lattice structure. Disorder is applied as a box-distribution to the force-constants $k$ of the springs. We obtain the reduced localization lengths $Lambda_M$ from calculated Lyapunov exponents for different system widths to roughly locate the squared critical transition frequency $omega_{text{c}}^2$. The data is finite-size scaled to acquire the squared critical transition frequency of $omega_{text{c}}^2 = 12.54 pm 0.03$ and a critical exponent of $ u = 1.55 pm 0.002$.
Numerical studies of amorphous silicon in harmonic approximation show that the highest 3.5% of vibrational normal modes are localized. As vibrational frequency increases through the boundary separating localized from delocalized modes, near omega_c=70meV, (the mobility edge) there is a localization-delocalization (LD) transition, similar to a second-order thermodynamic phase transition. By a numerical study on a system with 4096 atoms, we are able to see exponential decay lengths of exact vibrational eigenstates, and test whether or not these diverge at omega_c. Results are consistent with a localization length xi which diverges above omega_c as (omega-omega_c)^{-p} where the exponent is p = 1.3 +/- 0.5. Below the mobility edge we find no evidence for a diverging correlation length. Such an asymmetry would contradict scaling ideas, and we suppose it is a finite-size artifact. If the scaling regime is narrower than our 1 meV resolution, then it cannot be seen directly on our finite system.
We propose a new approach to probing ergodicity and its breakdown in quantum many-body systems based on their response to a local perturbation. We study the distribution of matrix elements of a local operator between the systems eigenstates, finding a qualitatively different behaviour in the many-body localized (MBL) and ergodic phases. To characterize how strongly a local perturbation modifies the eigenstates, we introduce the parameter ${cal G}(L)=langle ln (V_{nm}/delta) rangle$, which represents a disorder-averaged ratio of a typical matrix element of a local operator $V$ to the energy level spacing, $delta$; this parameter is reminiscent of the Thouless conductance in the single-particle localization. We show that the parameter ${cal G}(L)$ decreases with system size $L$ in the MBL phase, and grows in the ergodic phase. We surmise that the delocalization transition occurs when ${cal G}(L)$ is independent of system size, ${cal G}(L)={cal G}_csim 1$. We illustrate our approach by studying the many-body localization transition and resolving the many-body mobility edge in a disordered 1D XXZ spin-1/2 chain using exact diagonalization and time-evolving block decimation methods. Our criterion for the MBL transition gives insights into microscopic details of transition. Its direct physical consequences, in particular logarithmically slow transport at the transition, and extensive entanglement entropy of the eigenstates, are consistent with recent renormalization group predictions.
We analyze many-body localization (MBL) to delocalization transition in Sherrington-Kirkpatrick (SK) model of Ising spin glass (SG) in the presence of a transverse field $Gamma$. Based on energy resolved analysis, which is of relevance for a closed quantum system, we show that the quantum SK model has many-body mobility edges separating MBL phase which is non-ergodic and non-thermal from the delocalized phase which is ergodic and thermal. The range of the delocalized regime increases with increase in the strength of $Gamma$ and eventually for $Gamma$ larger than $Gamma_{CP}$ the entire many-body spectrum is delocalized. We show that the Renyi entropy is almost independent of the system size in the MBL phase, hinting towards an area law in this infinite range model while the delocalized phase shows volume law scaling of Renyi entropy. We further obtain spin glass transition curve in energy density $epsilon$-$Gamma$ plane from the collapse of eigenstate spin susceptibility. We demonstrate that in most of the parameter regime SG transition occurs close to the MBL transition indicating that the SG phase is non-ergodic and non-thermal while the paramagnetic phase is delocalized and thermal.
We focus on the many-body eigenstates across a localization-delocalization phase transition. To characterize the robustness of the eigenstates, we introduce the eigenstate overlaps $mathcal{O}$ with respect to the different boundary conditions. In the ergodic phase, the average of eigenstate overlaps $bar{mathcal{O}}$ is exponential decay with the increase of the system size indicating the fragility of its eigenstates, and this can be considered as an eigenstate-version butterfly effect of the chaotic systems. For localized systems, $bar{mathcal{O}}$ is almost size-independent showing the strong robustness of the eigenstates and the broken of eigenstate thermalization hypothesis. In addition, we find that the response of eigenstates to the change of boundary conditions in many-body localized systems is identified with the single-particle wave functions in Anderson localized systems. This indicates that the eigenstates of the many-body localized systems, as the many-body wave functions, may be independent of each other. We demonstrate that this is consistent with the existence of a large number of quasilocal integrals of motion in the many-body localized phase. Our results provide a new method to study localized and delocalized systems from the perspective of eigenstates.
Many-body localization (MBL) provides a mechanism to avoid thermalization in many-body quantum systems. Here, we show that an {it emergent} symmetry can protect a state from MBL. Specifically, we propose a $Z_2$ symmetric model with nonlocal interactions, which has an analytically known, SU(2) invariant, critical ground state. At large disorder strength all states at finite energy density are in a glassy MBL phase, while the lowest energy states are not. These do, however, localize when a perturbation destroys the emergent SU(2) symmetry. The model also provides an example of MBL in the presence of nonlocal, disordered interactions that are more structured than a power law. The presented ideas raise the possibility of an `inverted quantum scar, in which a state that does not exhibit area law entanglement is embedded in an MBL spectrum, which does.
Sebastian D. Pinski
,Rudolf A. Roemer
.
(2011)
.
"Study of the localization-delocalization transition for phonons via transfer matrix method techniques"
.
Sebastian Pinski Mr
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا