Do you want to publish a course? Click here

Local Susceptibility of the Yb2Ti2O7 Rare Earth Pyrochlore Computed from a Hamiltonian with Anisotropic Exchange

389   0   0.0 ( 0 )
 Added by Michel Gingras
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The rare earth pyrochlore magnet Yb2Ti2O7 is among a handful of materials that apparently exhibit no long range order down to the lowest explored temperatures and well below the Curie-Weiss temperature. Paramagnetic neutron scattering on a single crystal sample has revealed the presence of anisotropic correlations and recent work has led to the proposal of a detailed microscopic Hamiltonian for this material involving significantly anisotropic exchange. In this article, we compute the local sublattice susceptibility of Yb2Ti2O7 from the proposed model and compare with the measurements of Cao and coworkers [Physical Review Letters, {103}, 056402 (2009)], finding quite good agreement. In contrast, a model with only isotropic exchange and long range magnetostatic dipoles gives rise to a local susceptiblity that is inconsistent with the data.



rate research

Read More

Recent experimental results have emphasized two aspects of Tb2Ti2O7 which have not been taken into account in previous attempts to construct theories of Tb2Ti2O7: the role of small levels of structural disorder, which appears to control the formation of a long-range ordered state of as yet unknown nature; and the importance of strong coupling between spin and lattice degrees of freedom, which results in the hybridization of crystal field excitons and transverse acoustic phonons. In this work we examine the juncture of these two phenomena and show that samples with strongly contrasting behavior vis-a-vis the structural disorder (i.e. with and without the transition to the ordered state), develop identical magnetoelastic coupling. We also show that the comparison between single crystal and powder samples is more complicated than previously thought - the correlation between lattice parameter (as a measure of superstoichiometric Tb$^{3+}$) and the existence of a specific heat peak, as observed in powder samples, does not hold for single crystals.
The family of magnetic rare-earth pyrochlore oxides R2M2O7 plays host to a diverse array of exotic phenomena, driven by the interplay between geometrical frustration and spin-orbit interaction, which leads to anisotropy in both magnetic moments and their interactions. In this article we establish a general, symmetry--based theory of pyrochlore magnets with anisotropic exchange interactions. Starting from a very general model of nearest-neighbour exchange between Kramers ions, we find four distinct classical ordered states, all with q=0, competing with a variety of spin-liquids and unconventional forms of magnetic order. The finite-temperature phase diagram of this model is determined by Monte Carlo simulation, supported by classical spin-wave calculations. We pay particular attention to the region of parameter space relevant to the widely studied materials Er2Ti2O7, Yb2Ti2O7, and Er2Sn2O7. We find that many of the most interesting properties of these materials can be traced back to the accidental degeneracies where phases with different symmetries meet. These include the ordered ground state selection by fluctuations in Er2Ti2O7, the dimensional-reduction observed in Yb2Ti2O7, and the lack of reported magnetic order in Er2Sn2O7. We also discuss the application of this theory to other pyrochlore oxides.
The thermodynamic properties of the pyrochlore Yb2Ti2O7 material are calculated using the numericallinked-cluster (NLC) calculation method for an effective anisotropic-exchange spin-1/2 Hamiltonian with parameters recently determined by fitting the neutron scattering spin wave data obtained at high magnetic field h. Magnetization, M(T,h), as a function of temperature T and for different magnetic fields h applied along the three high symmetry directions [100], [110] and [111], are compared with experimental measurements on the material for temperature T>1.8K. The excellent agreement between experimentally measured and calculated M(T,h) over the entire temperature and magnetic field range considered provides strong quantitative validation of the effective Hamiltonian. It also confirms that fitting the high-field neutron spin wave spectra in the polarized paramagnetic state is an excellent method for determining the microscopic exchange constants of rare-earth insulating magnets that are described by an effective spin-1/2 Hamiltonian. Finally, we present results which demonstrate that a recent analysis of the polarized neutron scattering intensity of Yb2Ti2O7 using a random phase approximation (RPA) method [Chang et al., Nature Communications {3}, 992 (2012)] does not provide a good description of M(T,h) for $Tlesssim 10$ K, that is in the entire temperature regime where correlations become non-negligible.
Alkali metal rare-earth chalcogenide $ARECh2$ (A=alkali or monovalent metal, RE=rare earth, Ch=O, S, Se, Te), is a large family of quantum spin liquid (QSL) candidates we discovered recently. Unlike $YbMgGaO4$, most members in the family except for the oxide ones, have relatively small crystalline electric-field (CEF) excitation levels, particularly the first ones. This makes the conventional Curie-Weiss analysis at finite temperatures inapplicable and CEF excitations may play an essential role in understanding the low-energy spin physics. Here we considered an effective magnetic Hamiltonian incorporating CEF excitations and spin-spin interactions, to accurately describe thermodynamics in such a system. By taking $NaYbSe2$ as an example, we were able to analyze magnetic susceptibility, magnetization under pulsed high fields and heat capacity in a systematic and comprehensive way. The analysis allows us to produce accurate anisotropic exchange coupling energies and unambiguously determine a crossover temperature ($sim$25 K in the case of $NaYbSe2$), below which CEF effects fade away and pure spin-spin interactions stand out. We further validated the effective picture by successfully explaining the anomalous temperature dependence of electron spin resonance (ESR) spectral width. The effective scenario in principle can be generalized to other rare-earth spin systems with small CEF excitations.
We study the mechanism of orbital-order melting observed at temperature T_OO in the series of rare-earth manganites. We find that many-body super-exchange yields a transition-temperature T_KK that decreases with decreasing rare-earth radius, and increases with pressure, opposite to the experimental T_OO. We show that the tetragonal crystal-field splitting reduces T_KK further increasing the discrepancies with experiments. This proves that super-exchange effects, although very efficient, in the light of the experimentally observed trends, play a minor role for the melting of orbital ordering in rare-earth manganites.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا