Do you want to publish a course? Click here

Accretion of a Terrestrial-Like Minor Planet by a White Dwarf

102   0   0.0 ( 0 )
 Added by Carl Melis
 Publication date 2011
  fields Physics
and research's language is English
 Authors Carl Melis




Ask ChatGPT about the research

We present optical and infrared characterization of the polluted DAZ white dwarf GALEX J193156.8+011745. Imaging and spectroscopy from the ultraviolet to the thermal infrared indicates that the white dwarf hosts excess infrared emission consistent with the presence of an orbiting dusty debris disk. In addition to the five elements previously identified, our optical echelle spectroscopy reveals chromium and manganese and enables restrictive upper limits on several other elements. Synthesis of all detections and upper limits suggests that the white dwarf has accreted a differentiated parent body. We compare the inferred bulk elemental composition of the accreted parent body to expectations for the bulk composition of an Earth-like planet stripped of its crust and mantle and find relatively good agreement. At least two processes could be important in shaping the final bulk elemental composition of rocky bodies during the late phases of stellar evolution: irradiation and interaction with the dense stellar wind.



rate research

Read More

White dwarfs are the end state of most stars, including the Sun, after they exhaust their nuclear fuel. Between 1/4 and 1/2 of white dwarfs have elements heavier than helium in their atmospheres, even though these elements should rapidly settle into the stellar interiors unless they are occasionally replenished. The abundance ratios of heavy elements in white dwarf atmospheres are similar to rocky bodies in the Solar system. This and the existence of warm dusty debris disks around about 4% of white dwarfs suggest that rocky debris from white dwarf progenitors planetary systems occasionally pollute the stars atmospheres. The total accreted mass can be comparable to that of large asteroids in the solar system. However, the process of disrupting planetary material has not yet been observed. Here, we report observations of a white dwarf being transited by at least one and likely multiple disintegrating planetesimals with periods ranging from 4.5 hours to 4.9 hours. The strongest transit signals occur every 4.5 hours and exhibit varying depths up to 40% and asymmetric profiles, indicative of a small object with a cometary tail of dusty effluent material. The star hosts a dusty debris disk and the stars spectrum shows prominent lines from heavy elements like magnesium, aluminium, silicon, calcium, iron, and nickel. This system provides evidence that heavy element pollution of white dwarfs can originate from disrupted rocky bodies such as asteroids and minor planets.
The detection of a dust disc around G29-38 and transits from debris orbiting WD1145+017 confirmed that the photospheric trace metals found in many white dwarfs arise from the accretion of tidally disrupted planetesimals. The composition of these planetesimals is similar to that of rocky bodies in the inner solar system. Gravitationally scattering planetesimals towards the white dwarf requires the presence of more massive bodies, yet no planet has so far been detected at a white dwarf. Here we report optical spectroscopy of a $simeq27,750$K hot white dwarf that is accreting from a circumstellar gaseous disc composed of hydrogen, oxygen, and sulphur at a rate of $simeq3.3times10^9,mathrm{g,s^{-1}}$. The composition of this disc is unlike all other known planetary debris around white dwarfs, but resembles predictions for the makeup of deeper atmospheric layers of icy giant planets, with H$_2$O and H$_2$S being major constituents. A giant planet orbiting a hot white dwarf with a semi-major axis of $simeq15$ solar radii will undergo significant evaporation with expected mass loss rates comparable to the accretion rate onto the white dwarf. The orbit of the planet is most likely the result of gravitational interactions, indicating the presence of additional planets in the system. We infer an occurrence rate of spectroscopically detectable giant planets in close orbits around white dwarfs of $simeq10^{-4}$.
259 - S.-B. Qian , L. Liu , L.-Y. Zhu 2012
By using six new determined mid-eclipse times together with those collected from the literature, we found that the Observed-Calculated (O-C) curve of RR Cae shows a cyclic change with a period of 11.9 years and an amplitude of 14.3s, while it undergoes an upward parabolic variation (revealing a long-term period increase at a rate of dP/dt =+4.18(+-0.20)x10^(-12). The cyclic change was analyzed for the light-travel time effect that arises from the gravitational influence of a third companion. The mass of the third body was determined to be M_3*sin i = 4.2(+-0.4) M_{Jup} suggesting that it is a circumbinary giant planet when its orbital inclination is larger than 17.6 degree. The orbital separation of the circumbinary planet from the central eclipsing binary is about 5.3(+-0.6)AU. The period increase is opposite to the changes caused by angular momentum loss via magnetic braking or/and gravitational radiation, nor can it be explained by the mass transfer between both components because of its detached configuration. These indicate that the observed upward parabolic change is only a part of a long-period (longer than 26.3 years) cyclic variation, which may reveal the presence of another giant circumbinary planet in a wide orbit.
Astronomers have discovered thousands of planets outside the solar system, most of which orbit stars that will eventually evolve into red giants and then into white dwarfs. During the red giant phase, any close-orbiting planets will be engulfed by the star, but more distant planets can survive this phase and remain in orbit around the white dwarf. Some white dwarfs show evidence for rocky material floating in their atmospheres, in warm debris disks, or orbiting very closely, which has been interpreted as the debris of rocky planets that were scattered inward and tidally disrupted. Recently, the discovery of a gaseous debris disk with a composition similar to ice giant planets demonstrated that massive planets might also find their way into tight orbits around white dwarfs, but it is unclear whether the planets can survive the journey. So far, the detection of intact planets in close orbits around white dwarfs has remained elusive. Here, we report the discovery of a giant planet candidate transiting the white dwarf WD 1856+534 (TIC 267574918) every 1.4 days. The planet candidate is roughly the same size as Jupiter and is no more than 14 times as massive (with 95% confidence). Other cases of white dwarfs with close brown dwarf or stellar companions are explained as the consequence of common-envelope evolution, wherein the original orbit is enveloped during the red-giant phase and shrinks due to friction. In this case, though, the low mass and relatively long orbital period of the planet candidate make common-envelope evolution less likely. Instead, the WD 1856+534 system seems to demonstrate that giant planets can be scattered into tight orbits without being tidally disrupted, and motivates searches for smaller transiting planets around white dwarfs.
Monitoring the long-term radial velocity (RV) and acceleration of nearby stars has proven an effective method for directly detecting binary and substellar companions. Some fraction of nearby RV trend systems are expected to be comprised of compact objects that likewise induce a systemic Doppler signal. In this paper, we report the discovery of a white dwarf companion found to orbit the nearby ($pi = 28.297 pm 0.066$ mas) G9 V star HD 169889. High-contrast imaging observations using NIRC2 at Keck and LMIRCam at the LBT uncover the ($Delta H = 9.76 pm 0.16$, $Delta L = 9.60 pm 0.03$) companion at an angular separation of 0.8 (28 au). Thirteen years of precise Doppler observations reveal a steep linear acceleration in RV time series and place a dynamical constraint on the companion mass of $M geq 0.369 pm 0.010 M_{odot}$. This Sirius-like system adds to the census of white dwarf companions suspected to be missing in the solar neighborhood.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا