Do you want to publish a course? Click here

Low Temperature Dynamics of Magnons in a Spin-1/2 Ladder Compound

119   0   0.0 ( 0 )
 Added by Balint Nafradi
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have used a combination of neutron resonant spin-echo and triple-axis spectroscopies to determine the energy, fine structure, and linewidth of the magnon resonance in the model spin-1/2 ladder antiferromagnet IPA-CuCl_3 at temperatures T << Delta_0 /k_B, where Delta_0 is the spin gap at T=0. In this low-temperature regime we find that the results deviate substantially from the predictions of the non-linear sigma model proposed as a description of magnon excitations in one-dimensional quantum magnets and attribute these deviations to real-space and spin-space anisotropies in the spin Hamiltonian as well as scattering of magnon excitations from a dilute density of impurities. These effects are generic to experimental realizations of one-dimensional quantum magnets.

rate research

Read More

We have used a combination of neutron resonant spin-echo and triple-axis spectroscopies to determine the energy and linewidth of the magnon resonance in IPA-Cu(Cl$_{0.95}$Br$_{0.05}$)$_3$, a model spin-1/2 ladder antiferromagnet where Br substitution induces bond randomness. We find that the bond defects induce a blueshift, $delta Delta$, and broadening, $delta Gamma$, of the magnon gap excitation compared to the pure compound. At temperatures exceeding the energy scale of the inter-ladder exchange interactions, $delta Delta$ and $delta Gamma$ are temperature independent within the experimental error, in agreement with Matthiessens rule according to which magnon-defect scattering yields a temperature independent contribution to the magnon mean free path. Upon cooling, $delta Delta$ and $delta Gamma$ become temperature dependent and saturate at values lower than those observed at higher temperature, consistent with the crossover from one-dimensional to two-dimensional spin correlations with decreasing temperature previously observed in pure IPA-CuCl$_3$. These results indicate limitations in the applicability of Matthiessens rule for magnon scattering in low-dimensional magnets.
We report zero and longitudinal magnetic field muon spin relaxation measurements of the spin S=1/2 antiferromagnetic Heisenberg chain material SrCuO2. We find that in a weak applied magnetic field B the spin-lattice relaxation rate follows a power law B^n with n=-0.9(3). This result is temperature independent for 5K < T < 300 K. Within conformal field theory and using the Muller ansatz we conclude ballistic spin transport in SrCuO2.
111 - M. Pregelj , O. Zaharko , U. Stuhr 2018
We investigate magnetic excitations in the frustrated zigzag spin-1/2 chain compound $beta$-TeVO$_4$ by inelastic neutron scattering. In the magnetically ordered ground state, the excitation spectrum exhibits coexisting magnon dispersion, characteristic of long-range magnetic order, and a spinon-like continuum that prevails above 2 meV, indicating the dominance of intrachain interactions. Combining linear-spin-wave-theory and pre-calculated spinon-continuum results, we reproduce the experimental spectrum. Our analysis offers a minimal exchange-network model which determines dominant intrachain interactions, their anisotropies and weak interchain interactions. The obtained parameters explain the magnetic ordering vector and spin excitations in the magnetic ground state.
We report experimental and theoretical evidence that Rb$_2$Cu$_2$Mo$_3$O$_{12}$ has a nonmagnetic tetramer ground state of a two-leg ladder comprising antiferromagnetically coupled frustrated spin-$1/2$ chains and exhibits a Haldane spin gap of emergent spin-1 pairs. Three spin excitations split from the spin-1 triplet by a Dzyaloshinskii-Moriya interaction are identified in inelastic neutron-scattering and electron spin resonance spectra. A tiny magnetic field generates ferroelectricity without closing the spin gap, indicating a novel class of ferroelectricity induced by a vector spin chirality order.
Cu(C$_8$H$_6$N$_2$)Cl$_2$, a strong-rung spin-1/2 Heisenberg ladder compound, is probed by means of electron spin resonance (ESR) spectroscopy in the field-induced gapless phase above $H_{c1}$. The temperature dependence of the ESR linewidth is analyzed in the quantum field theory framework, suggesting that the anisotropy of magnetic interactions plays a crucial role, determining the peculiar low-temperature ESR linewidth behavior. In particular, it is argued that the uniform Dzyaloshinskii-Moriya interaction (which is allowed on the bonds along the ladder legs) can be the source of this behavior in Cu(C$_8$H$_6$N$_2$)Cl$_2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا