Do you want to publish a course? Click here

The Recent Star Formation in NGC 6822: an Ultraviolet Study

109   0   0.0 ( 0 )
 Added by Boryana Efremova
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We characterize the star formation in the low-metallicity galaxy NGC 6822 over the past few hundred million years, using GALEX far-UV (FUV, 1344-1786 A) and near-UV (NUV, 1771-2831 A) imaging, and ground-based Ha imaging. From GALEX FUV image, we define 77 star-forming (SF) regions with area >860 pc^2, and surface brightness <=26.8 mag(AB)arcsec^-2, within 0.2deg (1.7kpc) of the center of the galaxy. We estimate the extinction by interstellar dust in each SF region from resolved photometry of the hot stars it contains: E(B-V) ranges from the minimum foreground value of 0.22mag up to 0.66+-0.21mag. The integrated FUV and NUV photometry, compared with stellar population models, yields ages of the SF complexes up to a few hundred Myr, and masses from 2x10^2 Msun to 1.5x10^6 Msun. The derived ages and masses strongly depend on the assumed type of interstellar selective extinction, which we find to vary across the galaxy. The total mass of the FUV-defined SF regions translates into an average star formation rate (SFR) of 1.4x10^-2 Msun/yr over the past 100 Myr, and SFR=1.0x10^-2 Msun/yr in the most recent 10 Myr. The latter is in agreement with the value that we derive from the Ha luminosity, SFR=0.008 Msun/yr. The SFR in the most recent epoch becomes higher if we add the SFR=0.02 Msun/yr inferred from far-IR measurements, which trace star formation still embedded in dust (age <= a few Myr).



rate research

Read More

73 - L. Bianchi , B. Efremova 2006
We present HST WFPC2 and STIS imaging of the low metallicity galaxy NGC 6822, performed as part of a study of the young stellar populations in the galaxies of the Local Group. Eleven WFPC2 pointings, with some overlap, cover two regions, extending over 19x19 and 13x13 respectively, off the galaxy center. One 25x25 field observed with STIS FUV- and NUV- MAMA, includes Hodges OB8 association and the HII region Hubble V. We derive the physical parameters of the stars in the fields and the extinction by comparing the photometry to grids of model magnitudes. The environments studied in this work include one of the most luminous (in Halpha) HII regions in the Local Group (Hubble V) with a compact star cluster, a typical OB association (OB15), the sparse field population and the outskirts of NGC6822. The color-magnitude diagrams show similar ages of few Myrs for both OB8 and OB15. The density [per unit area] of hot massive stars in the core of the OB8 association is higher than in OB15 by a factor of 12, while the total stellar mass formed is similar. In both OB15 and OB8 massive star candidates are found. The average extinction is found to vary among the three environments studied: E(B-V) = 0.22 in the outer regions, E(B-V) = 0.27 in the fields East of the galaxy main bar, and E(B-V) = 0.40 in the HII region Hubble V. A quantitative discussion of the applicability of the reddening-free-index method for photometric determination of stellar parameters is provided for the filters used in this work, based on our grids of stellar models.
72 - WJG de Blok 2005
We investigate the star formation threshold in NGC 6822, a nearby Local Group dwarf galaxy, on sub-kpc scales using high-resolution, wide-field, deep HI, Halpha and optical data. In a study of the HI velocity profiles we identify a cool and warm neutral component in the Interstellar Medium of NGC 6822. We show that the velocity dispersion of the cool component (~4 km/s) when used with a Toomre-Q criterion gives an optimal description of ongoing star formation in NGC 6822, superior to that using the more conventional dispersion value of 6 km/s. However, a simple constant surface density criterion for star formation gives an equally superior description. We also investigate the two-dimensional distribution of Q and the star formation threshold and find that these results also hold locally. The range in gas density in NGC 6822 is much larger than the range in critical density, and we argue that the conditions for star formation in NGC 6822 are fully driven by this density criterion. Star formation is local, and in NGC 6822 global rotational or shear parameters are apparently not important.
97 - Ted K. Wyder 2001
Images of five fields in the Local Group dwarf irregular galaxy NGC 6822 obtained with the {it Hubble Space Telescope} in the F555W and F814W filters are presented. Photometry for the stars in these images was extracted using the Point-Spread-Function fitting program HSTPHOT/MULTIPHOT. The resulting color-magnitude diagrams reach down to $Vapprox26$, a level well below the red clump, and were used to solve quantitatively for the star formation history of NGC 6822. Assuming that stars began forming in this galaxy from low-metallicity gas and that there is little variation in the metallicity at each age, the distribution of stars along the red giant branch is best fit with star formation beginning in NGC 6822 12-15 Gyr ago. The best-fitting star formation histories for the old and intermediate age stars are similar among the five fields and show a constant or somewhat increasing star formation rate from 15 Gyr ago to the present except for a possible dip in the star formation rate from 3 to 5 Gyr ago. The main differences among the five fields are in the higher overall star formation rate per area in the bar fields as well as in the ratio of the recent star formation rate to the average past rate. These variations in the recent star formation rate imply that stars formed within the past 0.6 Gyr are not spatially very well mixed throughout the galaxy.
We present high sensitivity HI observations of NGC 6822, obtained with the Karoo Array Telescope (KAT-7). We study the kinematics, the mass distribution, and the star formation thresholds. The KAT-7 short baselines and low system temperature make it sensitive to large-scale, low surface brightness emission. The observations detected $sim$ 23$%$ more flux than previous ATCA observations. We fit a tilted ring model to the HI velocity field to derive the rotation curve (RC). The KAT-7 observations allow the measurement of the rotation curve of NGC 6822 out to 5.8 kpc, $sim$ 1 kpc further than existing measurements. NGC 6822 is seen to be dark matter dominated at all radii. The observationally motivated pseudo-isothermal dark matter (DM) halo model reproduces well the observed RC while the Navarro Frank-White DM model gives a poor fit to the data. We find the best fit mass to light ratio (M/L) of 0.12 $pm$ 0.01 which is consistent with the literature. The Modified Newtonian Dynamics (MOND) gives a poor fit to our data. We derive the star formation threshold in NGC 6822 using the HI and H$alpha$ data. The critical gas densities were calculated for gravitational instabilities using the Toomre-Q criterion and the cloud-growth criterion. We found that in regions of star formation, the cloud-growth criterion explains star formation better than the Toomre-Q criterion. This shows that the local shear rate could be a key player in cloud formation for irregular galaxies such as NGC 6822.
The bright Magellanic irregular galaxy NGC 4449 was observed during the Astro-2 Space Shuttle mission by the Ultraviolet Imaging Telescope (UIT), which obtained images of a ~40 arcmin field centered on the galaxy in two broad far-ultraviolet (FUV) bands centered at 1520 A and 1620 A, with 3 arcsec - 5 arcsec spatial resolution. Together with H-alpha and H-beta fluxes from ground-based Fabry-Perot images, these data are analyzed in order to explore the recent star formation history of NGC 4449. Maps of the flux ratios H-alpha/FUV and FUV/blue continuum are presented and interpreted using evolutionary synthesis models. Photometry is presented both for 22 apertures containing large OB complexes and for 57 small apertures containing compact FUV-emitting knots. The OB complexes along the northern edge of the visible system have high H-alpha/FUV ratios, and thus appear to be more dominated by the current generation of stars than are other parts of the galaxy. However, young sources do exist elsewhere and are particularly conspicuous along the bar. The small aperture analysis shows three candidate regions for sequential star formation. Surface brightness profiles are consistent with an exponential disk in both the FUV and the optical continuum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا