Do you want to publish a course? Click here

Optimality of Binning for Distributed Hypothesis Testing

152   0   0.0 ( 0 )
 Added by Md Saifur Rahman
 Publication date 2011
and research's language is English




Ask ChatGPT about the research

We study a hypothesis testing problem in which data is compressed distributively and sent to a detector that seeks to decide between two possible distributions for the data. The aim is to characterize all achievable encoding rates and exponents of the type 2 error probability when the type 1 error probability is at most a fixed value. For related problems in distributed source coding, schemes based on random binning perform well and often optimal. For distributed hypothesis testing, however, the use of binning is hindered by the fact that the overall error probability may be dominated by errors in binning process. We show that despite this complication, binning is optimal for a class of problems in which the goal is to test against conditional independence. We then use this optimality result to give an outer bound for a more general class of instances of the problem.



rate research

Read More

330 - Eli Haim , Yuval Kochman 2017
We consider the problem of distributed binary hypothesis testing of two sequences that are generated by an i.i.d. doubly-binary symmetric source. Each sequence is observed by a different terminal. The two hypotheses correspond to different levels of correlation between the two source components, i.e., the crossover probability between the two. The terminals communicate with a decision function via rate-limited noiseless links. We analyze the tradeoff between the exponential decay of the two error probabilities associated with the hypothesis test and the communication rates. We first consider the side-information setting where one encoder is allowed to send the full sequence. For this setting, previous work exploits the fact that a decoding error of the source does not necessarily lead to an erroneous decision upon the hypothesis. We provide improved achievability results by carrying out a tighter analysis of the effect of binning error; the results are also more complete as they cover the full exponent tradeoff and all possible correlations. We then turn to the setting of symmetric rates for which we utilize Korner-Marton coding to generalize the results, with little degradation with respect to the performance with a one-sided constraint (side-information setting).
The distributed hypothesis testing problem with full side-information is studied. The trade-off (reliability function) between the two types of error exponents under limited rate is studied in the following way. First, the problem is reduced to the problem of determining the reliability function of channel codes designed for detection (in analogy to a similar result which connects the reliability function of distributed lossless compression and ordinary channel codes). Second, a single-letter random-coding bound based on a hierarchical ensemble, as well as a single-letter expurgated bound, are derived for the reliability of channel-detection codes. Both bounds are derived for a system which employs the optimal detection rule. We conjecture that the resulting random-coding bound is ensemble-tight, and consequently optimal within the class of quantization-and-binning schemes.
In this paper, we propose a Bayesian Hypothesis Testing Algorithm (BHTA) for sparse representation. It uses the Bayesian framework to determine active atoms in sparse representation of a signal. The Bayesian hypothesis testing based on three assumptions, determines the active atoms from the correlations and leads to the activity measure as proposed in Iterative Detection Estimation (IDE) algorithm. In fact, IDE uses an arbitrary decreasing sequence of thresholds while the proposed algorithm is based on a sequence which derived from hypothesis testing. So, Bayesian hypothesis testing framework leads to an improved version of the IDE algorithm. The simulations show that Hard-version of our suggested algorithm achieves one of the best results in terms of estimation accuracy among the algorithms which have been implemented in our simulations, while it has the greatest complexity in terms of simulation time.
The Byzantine distributed quickest change detection (BDQCD) is studied, where a fusion center monitors the occurrence of an abrupt event through a bunch of distributed sensors that may be compromised. We first consider the binary hypothesis case where there is only one post-change hypothesis and prove a novel converse to the first-order asymptotic detection delay in the large mean time to a false alarm regime. This converse is tight in that it coincides with the currently best achievability shown by Fellouris et al.; hence, the optimal asymptotic performance of binary BDQCD is characterized. An important implication of this result is that, even with compromised sensors, a 1-bit link between each sensor and the fusion center suffices to achieve asymptotic optimality. To accommodate multiple post-change hypotheses, we then formulate the multi-hypothesis BDQCD problem and again investigate the optimal first-order performance under different bandwidth constraints. A converse is first obtained by extending our converse from binary to multi-hypothesis BDQCD. Two families of stopping rules, namely the simultaneous $d$-th alarm and the multi-shot $d$-th alarm, are then proposed. Under sufficient link bandwidth, the simultaneous $d$-th alarm, with $d$ being set to the number of honest sensors, can achieve the asymptotic performance that coincides with the derived converse bound; hence, the asymptotically optimal performance of multi-hypothesis BDQCD is again characterized. Moreover, although being shown to be asymptotically optimal only for some special cases, the multi-shot $d$-th alarm is much more bandwidth-efficient and energy-efficient than the simultaneous $d$-th alarm. Built upon the above success in characterizing the asymptotic optimality of the BDQCD, a corresponding leader-follower Stackelberg game is formulated and its solution is found.
We study the problem of mismatched binary hypothesis testing between i.i.d. distributions. We analyze the tradeoff between the pairwise error probability exponents when the actual distributions generating the observation are different from the distributions used in the likelihood ratio test, sequential probability ratio test, and Hoeffdings generalized likelihood ratio test in the composite setting. When the real distributions are within a small divergence ball of the test distributions, we find the deviation of the worst-case error exponent of each test with respect to the matched error exponent. In addition, we consider the case where an adversary tampers with the observation, again within a divergence ball of the observation type. We show that the tests are more sensitive to distribution mismatch than to adversarial observation tampering.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا