Do you want to publish a course? Click here

Dynamics of the intensity-dependent Jaynes-Cummings model analyzed via Fisher information

199   0   0.0 ( 0 )
 Added by Prof. A. Plastino
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The dynamics of the Buck and Sukumar model [B. Buck and C.V. Sukumar, Phys. Lett. A 81 (1981) 132] are investigated using different semi-classical information-theory tools. Interesting aspects of the periodicity inherent to the model are revealed and somewhat unexpected features are revealed that seem to be related to the classical-quantum transition.



rate research

Read More

Employing the trace distance as a measure for the distinguishability of quantum states, we study the influence of initial correlations on the dynamics of open systems. We concentrate on the Jaynes-Cummings model for which the knowledge of the exact joint dynamics of system and reservoir allows the treatment of initial states with arbitrary correlations. As a measure for the correlations in the initial state we consider the trace distance between the system-environment state and the product of its marginal states. In particular, we examine the correlations contained in the thermal equilibrium state for the total system, analyze their dependence on the temperature and on the coupling strength, and demonstrate their connection to the entanglement properties of the eigenstates of the Hamiltonian. A detailed study of the time dependence of the distinguishability of the open system states evolving from the thermal equilibrium state and its corresponding uncorrelated product state shows that the open system dynamically uncovers typical features of the initial correlations.
One of the fundamental tasks in quantum metrology is to estimate multiple parameters embedded in a noisy process, i.e., a quantum channel. In this paper, we study fundamental limits to quantum channel estimation via the concept of amortization and the right logarithmic derivative (RLD) Fisher information value. Our key technical result is the proof of a chain-rule inequality for the RLD Fisher information value, which implies that amortization, i.e., access to a catalyst state family, does not increase the RLD Fisher information value of quantum channels. This technical result leads to a fundamental and efficiently computable limitation for multiparameter channel estimation in the sequential setting, in terms of the RLD Fisher information value. As a consequence, we conclude that if the RLD Fisher information value is finite, then Heisenberg scaling is unattainable in the multiparameter setting.
The theory of non-Hermitian systems and the theory of quantum deformations have attracted a great deal of attention in the last decades. In general, non-Hermitian Hamiltonians are constructed by a textit{ad hoc} manner. Here, we study the (2+1) Dirac oscillator and show that in the context of the $kappa$--deformed Poincare-Hopf algebra its Hamiltonian is non-Hermitian but having real eigenvalues. The non-Hermiticity steams from the $kappa$-deformed algebra. From the mapping in [Bermudez textit{et al.}, Phys. Rev. A textbf{76}, 041801(R) 2007], we propose the $kappa$-JC and $kappa$--AJC models, which describe an interaction between a two-level system with a quantized mode of an optical cavity in the $kappa$--deformed context. We find that the $kappa$--deformation modifies the textit{Zitterbewegung} frequencies and the collapse and revival of quantum oscillations. In particular, the total angular momentum in the $z$--direction is not conserved anymore, as a direct consequence of the deformation.
We investigate the controllability of the Jaynes-Cummings dynamics in the resonant and nearly resonant regime. We analyze two different types of control operators acting on the bosonic part, corresponding - in the application to cavity QED - to an external electric and magnetic field, respectively. We prove approximate controllability for these models, for all values of the coupling constant g except those in a countable set S which is explicitly characterized in the statement. The proof relies on a spectral analysis which yields the non-resonance of the spectrum for every real g which is not in S.
352 - T.W. Chen , C.K. Law , P.T. Leung 2002
We present a propagator formalism to investigate the scattering of photons by a cavity QED system that consists of a single two-level atom dressed by a leaky optical cavity field. We establish a diagrammatic method to construct the propagator analytically. This allows us to determine the quantum state of the scattered photons for an arbitrary incident photon packet. As an application, we explicitly solve the problem of a single-photon packet scattered by an initially excited atom.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا