Do you want to publish a course? Click here

Neutrino Oscillations form Cosmic Sources: a Nu Window to Cosmology

258   0   0.0 ( 0 )
 Added by Thomas J. Weiler
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this essay we extend the standard discussion of neutrino oscillations to astrophysical neutrinos propagating through expanding space. This extension introduces a new cosmological parameter $I$ into the oscillation phase. The new parameter records cosmic history in much the same manner as the redshift z or the apparent luminosity D_L. Measuring $I$ through neutrino oscillations could help determine cosmological parameters and discriminate among different cosmologies.



rate research

Read More

66 - Samuel Passaglia 2020
We develop in this thesis the principles governing the production of our universes primordial inhomogeneities during its early phase of inflation. As a guiding thread we ask what physics during inflation can lead to perturbations so large that they form black holes in sufficient abundance to be the dark matter. We start with the simplest single-field slow-roll paradigm for inflation, which cannot produce primordial black hole dark matter, and then gradually relieve its assumptions. After developing the effective field theory of inflation, we highlight the importance of the single-clock condition in controlling the inhomogeneities. Going beyond single-clock inflation takes us first to a qualitatively different inflationary scenario known as ultra-slow roll and finally to understanding the physics of the Higgs field during inflation.
Using the chiral representation for spinors we present a particularly transparent way to generate the most general spinor dynamics in a theory where gravity is ruled by the Einstein-Cartan-Holst action. In such theories torsion need not vanish, but it can be re-interpreted as a 4-fermion self-interaction within a torsion-free theory. The self-interaction may or may not break parity invariance, and may contribute positively or negatively to the energy density, depending on the couplings considered. We then examine cosmological models ruled by a spinorial field within this theory. We find that while there are cases for which no significant cosmological novelties emerge, the self-interaction can also turn a mass potential into an upside-down Mexican hat potential. Then, as a general rule, the model leads to cosmologies with a bounce, for which there is a maximal energy density, and where the cosmic singularity has been removed. These solutions are stable, and range from the very simple to the very complex.
We present a full-fledged analysis of Brans-Dicke cosmology with a cosmological constant and cold dark matter (BD-$Lambda$CDM for short). We extend the scenarios where the current cosmological value of the BD-field is restricted by the local astrophysical domain to scenarios where that value is fixed only by the cosmological observations, which should be more natural in view of the possible existence of local screening mechanims. Our analysis includes both the background and perturbations equations in different gauges. We find that the BD-$Lambda$CDM is favored by the overall cosmological data as compared to the concordance GR-$Lambda$CDM model, namely data on distant supernovae, cosmic chronometers, local measurements of the Hubble parameter, baryonic acoustic oscillations, Large-Scale Structure formation and the cosmic microwave background under full Planck 2018 CMB likelihood. We also test the impact of Strong and Weak-Lensing data on our results, which can be significant. We find that the BD-$Lambda$CDM can mimic effective quintessence with a significance of about $3-3.5sigma$ c.l. (depending on the lensing datasets). The fact that the BD-$Lambda$CDM behaves effectively as a Running Vacuum Model (RVM) when viewed from the GR perspective helps to alleviate some of the existing tensions with the data, such as the $sigma_8$ excess predicted by GR-$Lambda$CDM. On the other hand, the BD-$Lambda$CDM model has a crucial bearing on the acute $H_0$-tension with the local measurements, which is rendered virtually harmless owing to the small increase of the effective value of the gravitational constant with the expansion. The simultaneous alleviation of the two tensions is a most remarkable feature of BD-gravity with a cosmological constant in the light of the current observations, and hence goes in support of BD-$Lambda$CDM against GR-$Lambda$CDM
We consider the femto-lensing due to a cosmic string. If a cosmic string with the deficit angle $Deltasim 100$ [femto-arcsec] $sim10^{-18}$ [rad] exists around the line of sight to a gamma-ray burst, we may observe characteristic interference patterns caused by gravitational lensing in the energy spectrum of the gamma-ray burst. This femto-lensing event was first proposed as a tool to probe small mass primordial black holes. In this paper, we propose use of the femto-lensing to probe cosmic strings with extremely small tension. Observability conditions and the event rate are discussed. Differences between the cases of a point mass and a cosmic string are presented.
We consider an alternative to inflation for the generation of superhorizon perturbations in the universe in which the speed of sound is faster than the speed of light. We label such cosmologies, first proposed by Armendariz-Picon, {it tachyacoustic}, and explicitly construct examples of non-canonical Lagrangians which have superluminal sound speed, but which are causally self-consistent. Such models possess two horizons, a Hubble horizon and an acoustic horizon, which have independent dynamics. Even in a decelerating (non-inflationary) background, a nearly scale-invariant spectrum of perturbations can be generated by quantum perturbations redshifted outside of a shrinking acoustic horizon. The acoustic horizon can be large or even infinite at early times, solving the cosmological horizon problem without inflation. These models do not, however, dynamically solve the cosmological flatness problem, which must be imposed as a boundary condition. Gravitational wave modes, which are produced by quantum fluctuations exiting the Hubble horizon, are not produced.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا