Do you want to publish a course? Click here

Observation of a warped helical spin-texture in Bi$_2$Se$_3$ from circular dichroism angle-resolved photoemission spectroscopy

162   0   0.0 ( 0 )
 Added by Yihua Wang
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

A differential coupling of topological surface states to left- versus right-circularly polarized light is the basis of many opto-spintronics applications of topological insulators. Here we report direct evidence of circular dichroism from the surface states of Bi$_2$Se$_3$ using a laser-based time-of-flight angle-resolved photoemission spectroscopy. By employing a novel sample rotational analysis, we resolve unusual modulations in the circular dichroism photoemission pattern as a function of both energy and momentum, which perfectly mimic the predicted but hitherto un-observed three-dimensional warped spin-texture of the surface states. By developing a microscopic theory of photoemission from topological surface states, we show that this correlation is a natural consequence of spin-orbit coupling. These results suggest that our technique may be a powerful probe of the spin-texture of spin-orbit coupled materials in general.



rate research

Read More

158 - Yihua Wang , Nuh Gedik 2012
Topological insulators are a new phase of matter that exhibits exotic surface electronic properties. Determining the spin texture of this class of material is of paramount importance for both fundamental understanding of its topological order and future spin-based applications. In this article, we review the recent experimental and theoretical studies on the differential coupling of left- versus right-circularly polarized light to the topological surface states in angle-resolved photoemission spectroscopy. These studies have shown that the polarization of light and the experimental geometry plays a very important role in both photocurrent intensity and spin polarization of photoelectrons emitted from the topological surface states. A general photoemission matrix element calculation with spin-orbit coupling can quantitatively explain the observations and is also applicable to topologically trivial systems. These experimental and theoretical investigations suggest that optical excitation with circularly polarized light is a promising route towards mapping the spin-orbit texture and manipulating the spin orientation in topological and other spin-orbit coupled materials.
The helical Dirac fermions at the surface of topological insulators show a strong circular dichroism which has been explained as being due to either the initial-state spin angular momentum, the initial-state orbital angular momentum, or the handedness of the experimental setup. All of these interpretations conflict with our data from Bi2Te3 which depend on the photon energy and show several sign changes. Our one-step photoemission calculations coupled to ab initio theory confirm the sign change and assign the dichroism to a final-state effect. The spin polarization of the photoelectrons, instead, remains a reliable probe for the spin in the initial state.
182 - Y. H. Wang , D. Hsieh , E. J. Sie 2012
We perform time- and angle-resolved photoemission spectroscopy of a prototypical topological insulator Bi$_2$Se$_3$ to study the ultrafast dynamics of surface and bulk electrons after photo-excitation. By analyzing the evolution of surface states and bulk band spectra, we obtain their electronic temperature and chemical potential relaxation dynamics separately. These dynamics reveal strong phonon-assisted surface-bulk coupling at high lattice temperature and total suppression of inelastic scattering between the surface and the bulk at low lattice temperature. In this low temperature regime, the unique cooling of Dirac fermions in TI by acoustic phonons is manifested through a power law dependence of the surface temperature decay rate on carrier density.
We use angle-resolved photoemission with circularly polarized excitation to demonstrate that in the 5x1 superstructure-free Pb-Bi2212 material there are no signatures of time-reversal symmetry breaking in the sense of the criteria developed earlier (Kaminski et al. Nature {bf 416}, 610 (2002)). In addition to the existing technique, we suggest and apply an independent experimental approach to prove the absence of the effect in the studied compounds. The dichroic signal retains reflection antisymmetry as a function of temperature and doping and in all mirror planes, precisely defined by the experimental dispersion at low energies. The obtained results demonstrate that the signatures of time-reversal symmetry violation in pristine Bi2212, as determined by ARPES, are not a universal feature of all cuprate superconductors.
Nuclear magnetic resonance (NMR) and transport measurements have been performed at high magnetic fields and low temperatures in a series of $n$-type Bi$_{2}$Se$_{3}$ crystals. In low density samples, a complete spin polarization of the electronic system is achieved, as observed from the saturation of the isotropic component of the $^{209}$Bi NMR shift above a certain magnetic field. The corresponding spin splitting, defined in the phenomenological approach of a 3D electron gas with a large (spin-orbit-induced) effective $g$-factor, scales as expected with the Fermi energy independently determined by simultaneous transport measurements. Both the effective electronic $g$-factor and the contact hyperfine coupling constant are precisely determined. The magnitude of this latter reveals a non negligible $s$-character of the electronic wave function at the bottom of the conduction band. Our results show that the bulk electronic spin polarization can be directly probed via NMR and pave the way for future NMR investigations of the electronic states in Bi-based topological insulators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا