Do you want to publish a course? Click here

Fermi Large Area Telescope Detection of Bright Gamma-ray Outbursts from a Peculiar Quasar 4C +21.35

115   0   0.0 ( 0 )
 Added by Yasuyuki Tanaka
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we report on the two-year-long Fermi-LAT observation of the peculiar blazar 4C +21.35 (PKS 1222+216). This source was in a quiescent state from the start of science operations of the Fermi Gamma-ray Space Telescope in 2008 August until 2009 September, and then became more active, with gradually increasing flux and some moderately-bright flares. In 2010 April and June, 4C +21.35 underwent a very strong GeV outburst composed of several major flares characterized by rise and decay timescales of the order of a day. During the outburst, the GeV spectra of 4C +21.35 displayed a broken power-law form with spectral breaks observed near 1-3 GeV photon energies. We demonstrate that, at least during the major flares, the jet in 4C +21.35 carried a total kinetic luminosity comparable to the total accretion power available to feed the outflow. We also discuss the origin of the break observed in the flaring spectra of 4C +21.35. We show that, in principle, a model involving annihilation of the GeV photons on the He II Lyman recombination continuum and line emission of broad line region clouds may account for such. However, we also discuss the additional constraint provided by the detection of 4C +21.35 at 0.07-0.4 TeV energies by the MAGIC telescope, which coincided with one of the GeV flares of the source. We argue that there are reasons to believe that the $lesssim$,TeV emission of 4C +21.35 (as well as the GeV emission of the source, if co-spatial), is not likely to be produced inside the broad line region zone of highest ionization ($sim 10^{17}$,cm from the nucleus), but instead originates further away from the active center, namely around the characteristic scale of the hot dusty torus surrounding the 4C +21.35 nucleus ($sim 10^{19}$,cm).



rate research

Read More

We report the Fermi Large Area Telescope detection of extended gamma-ray emission from the lobes of the radio galaxy Fornax A using 6.1 years of Pass 8 data. After Centaurus A, this is now the second example of an extended gamma-ray source attributed to a radio galaxy. Both an extended flat disk morphology and a morphology following the extended radio lobes were preferred over a point-source description, and the core contribution was constrained to be < 14% of the total gamma-ray flux. A preferred alignment of the gamma-ray elongation with the radio lobes was demonstrated by rotating the radio lobes template. We found no significant evidence for variability on ~0.5 year timescales. Taken together, these results strongly suggest a lobe origin for the gamma rays. With the extended nature of the > 100 MeV gamma-ray emission established, we model the source broadband emission considering currently available total lobe radio and millimeter flux measurements, as well as X-ray detections attributed to inverse Compton (IC) emission off the cosmic microwave background (CMB). Unlike the Centaurus A case, we find that a leptonic model involving IC scattering of CMB and extragalactic background light (EBL) photons underpredicts the gamma-ray fluxes by factors of about ~ 2 - 3, depending on the EBL model adopted. An additional gamma-ray spectral component is thus required, and could be due to hadronic emission arising from proton-proton collisions of cosmic rays with thermal plasma within the radio lobes.
249 - Qiang Yuan 2017
The remnant of supernova explosion is widely believed to be the acceleration site of high-energy cosmic ray particles. The acceleration timescale is, however, typically very long. Here we report the detection of a variable $gamma$-ray source with the Fermi Large Area Telescope, which is positionally and temporally consistent with a peculiar supernova, iPTF14hls. A quasi-stellar object SDSS J092054.04+504251.5, which is probably a blazar according to the infrared data, is found in the error circle of the $gamma$-ray source. More data about the $gamma$-ray source and SDSS J092054.04+504251.5 are needed to confirm their association. On the other hand, if the association between the $gamma$-ray source and the supernova is confirmed, this would be the first time to detect high-energy $gamma$-ray emission from a supernova, suggesting very fast particle acceleration by supernova explosions.
148 - M. Ackermann 2014
The discovery of rapidly variable Very High Energy (VHE; E > 100 GeV) gamma-ray emission from 4C +21.35 (PKS 1222+216) by MAGIC on 2010 June 17, triggered by the high activity detected by the Fermi Large Area Telescope (LAT) in high energy (HE; E > 100 MeV) gamma-rays, poses intriguing questions on the location of the gamma-ray emitting region in this flat spectrum radio quasar. We present multifrequency data of 4C +21.35 collected from centimeter to VHE during 2010 to investigate the properties of this source and discuss a possible emission model. The first hint of detection at VHE was observed by MAGIC on 2010 May 3, soon after a gamma-ray flare detected by Fermi-LAT that peaked on April 29. The same emission mechanism may therefore be responsible for both the HE and VHE emission during the 2010 flaring episodes. Two optical peaks were detected on 2010 April 20 and June 30, close in time but not simultaneous with the two gamma-ray peaks, while no clear connection was observed between the X-ray an gamma-ray emission. An increasing flux density was observed in radio and mm bands from the beginning of 2009, in accordance with the increasing gamma-ray activity observed by Fermi-LAT, and peaking on 2011 January 27 in the mm regime (230 GHz). We model the spectral energy distributions (SEDs) of 4C +21.35 for the two periods of the VHE detection and a quiescent state, using a one-zone model with the emission coming from a very compact region outside the broad line region. The three SEDs can be fit with a combination of synchrotron self-Compton and external Compton emission of seed photons from a dust torus, changing only the electron distribution parameters between the epochs. The fit of the optical/UV part of the spectrum for 2010 April 29 seems to favor an inner disk radius of <6 gravitational radii, as one would expect from a prograde-rotating Kerr black hole.
We analyze the MeV/GeV emission from four bright Gamma-Ray Bursts (GRBs) observed by the Fermi-Large Area Telescope to produce robust, stringent constraints on a dependence of the speed of light in vacuo on the photon energy (vacuum dispersion), a form of Lorentz invariance violation (LIV) allowed by some Quantum Gravity (QG) theories. First, we use three different and complementary techniques to constrain the total degree of dispersion observed in the data. Additionally, using a maximally conservative set of assumptions on possible source-intrinsic spectral-evolution effects, we constrain any vacuum dispersion solely attributed to LIV. We then derive limits on the QG energy scale (the energy scale that LIV-inducing QG effects become important, E_QG) and the coefficients of the Standard Model Extension. For the subluminal case (where high energy photons propagate more slowly than lower energy photons) and without taking into account any source-intrinsic dispersion, our most stringent limits (at 95% CL) are obtained from GRB090510 and are E_{QG,1}>7.6 times the Planck energy (E_Pl) and E_{QG,2}>1.3 x 10^11 GeV for linear and quadratic leading order LIV-induced vacuum dispersion, respectively. These limits improve the latest constraints by Fermi and H.E.S.S. by a factor of ~2. Our results disfavor any class of models requiring E_{QG,1} lesssim E_Pl.
The Extragalactic Background Light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above ~10 GeV during propagation from sources at cosmological distances. This results in a redshift- and energy-dependent attenuation of the gamma-ray flux of extragalactic sources such as blazars and Gamma-Ray Bursts (GRBs). The Large Area Telescope onboard Fermi detects a sample of gamma-ray blazars with redshift up to z~3, and GRBs with redshift up to z~4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for these sources, we investigate the effect of gamma-ray flux attenuation by the EBL. We place upper limits on the gamma-ray opacity of the Universe at various energies and redshifts, and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the baseline model of Stecker et al. (2006) can be ruled out with high confidence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا