No Arabic abstract
The LHCb experiment has the potential, during the 2010-11 run, to observe the rare decay $B^0_sto mu^+mu^-$ or improve significantly its exclusion limits. This study will provide very sensitive probes of New Physics (NP) effects. High sensitivity to NP contributions is also achieved by measuring photon polarization by performing a time dependent analysis of $B^0_s to phigamma$, and by an angular study of the decay $B^0_d to K^{*0}mu^+mu^-$. Preparations for these analyses are presented and studies shown of how existing data, for example prompt $J/psi$ events, can be used to validate the analysis strategy.
Rare lepton decays of the B(s), D and K mesons are sensitive probes of New Physics. In particular, the search for the decays $B^0_(s) -> mu^+ mu^-$ provides information on the presence of new (pseudo-)scalar particles. LHCb is well suited for these analyses due to its large acceptance and trigger efficiency, as well as its excellent invariant mass resolution and lepton identification capabilities. The status of these analyses with $sim1$ fb$^{-1}$ of pp collisions collected by LHCb in 2011 at $sqrt{s}=7$ TeV is reviewed.
The results on rare decay processes obtained by the LHCb experiment using 1.0 fb^(-1) of pp collisions collected in 2011 at a centre-of-mass energy of sqrt(s)=7 TeV are presented. Branching fractions, angular distributions, CP and isospin asymmetries are investigated to search for new physics effects.
Rare decays involving leptons or photons in the final states are studied using 1.0 fb^{-1} of pp collisions at a centre-of-mass energy of sqrt{s}=7TeV collected by the LHCb experiment in 2011. We present results of measurements of branching ratios, angular distributions, and isospin asymmetries obtained using this data sample.
This article is a short and non-exhaustive summary of the prospects to find New Physics with LHCb as was presented at the HCP conference at Toronto on August 26th 2010.
The direct searches for Beyond Standard Model (BSM) particles have been constraining their mass scale to the extent where it is now becoming consensual that such particles are likely to be above the energy reach of the LHC. Meanwhile, the studies of indirect probes of BSM physics, with all their diversity, have been progressing both in accurracy and in setting up observables with reduced theoretical uncertainties. The observation of flavour anomalies in $b$ hadron decays represents an important part of the program of indirect detection of BSM physics. Several benchmark analyses involving leptonic or semileptonic decays are presented, with an emphasis on intriguing patterns which are systematic in their trend, though not individually significant yet.