Nonergodic solutions of the generalized Langevin equation


Abstract in English

It is known that in the regime of superlinear diffusion, characterized by zero integral friction (vanishing integral of the memory function), the generalized Langevin equation may have non-ergodic solutions which do not relax to equilibrium values. It is shown that the equation may have non-ergodic (non-stationary) solutions even if the integral of the memory function is finite and diffusion is normal.

Download