Do you want to publish a course? Click here

Nonergodic solutions of the generalized Langevin equation

229   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English
 Authors A.V. Plyukhin




Ask ChatGPT about the research

It is known that in the regime of superlinear diffusion, characterized by zero integral friction (vanishing integral of the memory function), the generalized Langevin equation may have non-ergodic solutions which do not relax to equilibrium values. It is shown that the equation may have non-ergodic (non-stationary) solutions even if the integral of the memory function is finite and diffusion is normal.



rate research

Read More

111 - Yury A. Koksharov 2019
Approximate analytical solutions of the modified Langevin equation are obtained. These solutions are relatively simple and enough accurate. They are illustrated by considering a mean-field model of a system with interacting superparamagnetic particles. Within the framework of this model system we derived analytical approximate formulas for the temperature dependencies of the saturation and remnant magnetization, coercive force, initial magnetic susceptibility as well as for the law of approach to saturation. We obtained also some exact analytical relationships for the coercive force. We found remarkable similarity between the approximate cubic equation, which is resulted from the modified Langevin equation, and the exact equation resulting from the divergence condition of a solution derivative. The analytical formulas obtained in this work can be used in various models (not only magnetic ones), where the modified Langevin equation is applied.
240 - S. I. Denisov 2009
We derive the generalized Fokker-Planck equation associated with the Langevin equation (in the Ito sense) for an overdamped particle in an external potential driven by multiplicative noise with an arbitrary distribution of the increments of the noise generating process. We explicitly consider this equation for various specific types of noises, including Poisson white noise and L{e}vy stable noise, and show that it reproduces all Fokker-Planck equations that are known for these noises. Exact analytical, time-dependent and stationary solutions of the generalized Fokker-Planck equation are derived and analyzed in detail for the cases of a linear, a quadratic, and a tailored potential.
We investigate the nature of the effective dynamics and statistical forces obtained after integrating out nonequilibrium degrees of freedom. To be explicit, we consider the Rouse model for the conformational dynamics of an ideal polymer chain subject to steady driving. We compute the effective dynamics for one of the many monomers by integrating out the rest of the chain. The result is a generalized Langevin dynamics for which we give the memory and noise kernels and the effective force, and we discuss the inherited nonequilibrium aspects.
The ultimate goal of physics is finding a unique equation capable of describing the evolution of any observable quantity in a self-consistent way. Within the field of statistical physics, such an equation is known as the generalized Langevin equation (GLE). Nevertheless, the formal and exact GLE is not particularly useful, since it depends on the complete history of the observable at hand, and on hidden degrees of freedom typically inaccessible from a theoretical point of view. In this work, we propose the use of deep neural networks as a new avenue for learning the intricacies of the unknowns mentioned above. By using machine learning to eliminate the unknowns from GLEs, our methodology outperforms previous approaches (in terms of efficiency and robustness) where general fitting functions were postulated. Finally, our work is tested against several prototypical examples, from a colloidal systems and particle chains immersed in a thermal bath, to climatology and financial models. In all cases, our methodology exhibits an excellent agreement with the actual dynamics of the observables under consideration.
Stochastically switching force terms appear frequently in models of biological systems under the action of active agents such as proteins. The interaction of switching force and Brownian motion can create an effective thermal equilibrium even though the system does not obey a potential function. In order to extend the field of energy landscape analysis to understand stability and transitions in switching systems, we derive the quasipotential that defines this effective equilibrium for a general overdamped Langevin system with a force switching according to a continuous-time Markov chain process. Combined with the string method for computing most-probable transition paths, we apply our method to an idealized system and show the appearance of previously unreported numerical challenges. We present modifications to the algorithms to overcome these challenges, and show validity by demonstrating agreement between our computed quasipotential barrier and asymptotic Monte Carlo transition times in the system.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا