No Arabic abstract
We present 5 to 36 micron mid-infrared spectra of 82 young stars in the ~2 Myr old Chamaeleon I star-forming region, obtained with the Spitzer Infrared Spectrograph (IRS). We have classified these objects into various evolutionary classes based on their spectral energy distributions and the spectral features seen in the IRS spectra. We have analyzed the mid-IR spectra of Class II objects in Chamaeleon I in detail, in order to study the vertical and radial structure of the protoplanetary disks surrounding these stars. We find evidence for substantial dust settling in most protoplanetary disks in Chamaeleon I. We have identified several disks with altered radial structures in Chamaeleon I, among them transitional disk candidates which have holes or gaps in their disks. Analysis of the silicate emission features in the IRS spectra of Class II objects in Chamaeleon I shows that the dust grains in these disks have undergone significant processing (grain growth and crystallization). However, disks with radial holes/gaps appear to have relatively unprocessed grains. We further find the crystalline dust content in the inner (< 1-2 AU) and the intermediate (< 10 AU) regions of the protoplanetary disks to be tightly correlated. We also investigate the effects of accretion and stellar multiplicity on the disk structure and dust properties. Finally, we compare the observed properties of protoplanetary disks in Cha I with those in slightly younger Taurus and Ophiuchus regions and discuss the effects of disk evolution in the first 1-2 Myr.
Context. Recent metallicity determinations in young open clusters and star-forming regions suggest that the latter may be characterized by a slightly lower metallicity than the Sun and older clusters in the solar vicinity. However, these results are based on small statistics and inhomogeneous analyses. The Gaia-ESO Survey is observing and homogeneously analyzing large samples of stars in several young clusters and star-forming regions, hence allowing us to further investigate this issue. Aims. We present a new metallicity determination of the Chamaeleon I star-forming region, based on the products distributed in the first internal release of the Gaia-ESO Survey. Methods. 48 candidate members of Chamaeleon I have been observed with the high-resolution spectrograph UVES. We use the surface gravity, lithium line equivalent width and position in the Hertzsprung-Russell diagram to confirm the cluster members and we use the iron abundance to derive the mean metallicity of the region. Results. Out of the 48 targets, we confirm 15 high probability members. Considering the metallicity measurements for 9 of them, we find that the iron abundance of Chamaeleon I is slightly subsolar with a mean value [Fe/H]=-0.08+/-0.04 dex. This result is in agreement with the metallicity determination of other nearby star-forming regions and suggests that the chemical pattern of the youngest stars in the solar neighborhood is indeed more metal-poor than the Sun. We argue that this evidence may be related to the chemical distribution of the Gould Belt that contains most of the nearby star-forming regions and young clusters.
We present our investigation of 319 Class II objects in Orion A observed by $Spitzer$/IRS. We also present the follow-up observation of 120 of these Class II objects in Orion A from IRTF/SpeX. We measure continuum spectral indices, equivalent widths, and integrated fluxes that pertain to disk structure and dust composition from IRS spectra of Class II objects in Orion A. We estimate mass accretion rates using hydrogen recombination lines in the SpeX spectra of our targets. Utilizing these properties, we compare the distributions of the disk and dust properties of Orion A disks to those of Taurus disks with respect to position within Orion A (ONC and L1641) and to the sub-groups by the inferred radial structures, such as transitional disks vs. radially continuous full disks. Our main findings are as follows. (1) Inner disks evolve faster than the outer disks. (2) Mass accretion rate of transitional disks and that of radially continuous full disks are statistically significantly displaced from each other. The median mass accretion rate of radially continuous disks in ONC and L1641 is not very different from that in Taurus. (3) Less grain processing has occurred in the disks in ONC compared to those in Taurus, based on analysis of the shape index of the 10 $mu$m silicate feature ($F_{11.3}/F_{9.8}$). (4) The 20-31 $mu$m continuum spectral index tracks the projected distance from the most luminous Trapezium star, $theta^{1}$ Ori C. A possible explanation is the effect of UV ablation of the outer part of the disks.
Our knowledge of circumstellar disks has traditionally been based on studies of dust. However, gas dominates the disk mass and its study is key to understand the star and planet formation process. Spitzer can access gas emission lines in the mid-infrared, providing new diagnostics of the physical conditions in accretion disks and outflows. We have studied the spectra of 64 pre-main-sequence stars in Taurus using Spitzer/IRS observations. We have detected H2 (17.03, 28.22 $mu$m) emission in 6 objects, [Ne II] (12.81 $mu$m) in 18 objects, and [Fe II] (17.93, 25.99 $mu$m) in 7 objects. [Ne II] detections are found primarily in Class II objects. The luminosity of the [Ne II] line, is in general higher for objects known to drive jets than for those without known jets, but the two groups are not statistically distinguishable. We have searched for correlations between the line luminosities and different parameters related to the star-disk system. The [Ne II] luminosity is correlated with X-ray luminosity for Class II objects. The [NeII] luminosity is correlated with disk mass and accretion rate when the sample is divided into high and low accretors. We also find correlations between [NeII] luminosity and mid-IR continuum luminosity and with luminosity of the [O I] (6300 AA) line, the latter being an outflow tracer. [Fe II] luminosity correlates with mass accretion rate. No correlations were found between H2 luminosity and several tested parameters. Our study reveals a general trend toward accretion-related phenomena as the origin of the gas emission lines. Shocks in jets and outflowing material are more likely to play a significant role than shocks in infalling material. The role of X-ray irradiation is less prominent but still present for [Ne II], in particular for Class II sources, the lack of correlation between [Fe II] and [Ne II] points toward different emitting mechanisms.
We present the results of a multiplicity survey of 212 T Tauri stars in the Chamaeleon I and Taurus-Auriga star-forming regions, based on high-resolution spectra from the Magellan Clay 6.5 m telescope. From these data, we achieved a typical radial velocity precision of ~80 m/s with slower rotators yielding better precision, in general. For 174 of these stars, we obtained multi-epoch data with sufficient time baselines to identify binaries based on radial velocity variations. We identified eight close binaries and four close triples, of which three and two, respectively, are new discoveries. The spectroscopic multiplicity fractions we find for Cha I (7%) and Tau-Aur (6%) are similar to each other, and to the results of field star surveys in the same mass and period regime. However, unlike the results from imaging surveys, the frequency of systems with close companions in our sample is not seen to depend on primary mass. Additionally, we do not find a strong correlation between accretion and close multiplicity. This implies that close companions are not likely the main source of the accretion shut down observed in weak-lined T Tauri stars. Our results also suggest that sufficient radial velocity precision can be achieved for at least a subset of slowly rotating young stars to search for hot Jupiter planets.
The Chamaeleon star-forming region has been extensively studied in the last decades. However, most studies have been confined to the densest parts of the clouds. In a previous paper, we analysed the kinematical properties of the spectroscopically confirmed population of the Chamaeleon I and II clouds. We now report on a search for new kinematical candidate members to the Chamaeleon I and II moving groups using available information from public databases and catalogues. Our candidates were initially selected in an area of 3 deg around each cloud on the basis of proper motions and colours from the UCAC4 Catalog. The SEDs of the objects were constructed using photometry retrieved from the Virtual Observatory and other resources, and fitted to models of stellar photospheres to derive effective temperatures, gravity values, and luminosities. Masses and ages were estimated by comparison with theoretical evolutionary tracks in a Hertzprung-Russell diagram. We have identified 51 and 14 candidate members to the Chamaeleon I and II moving groups, respectively, of which 17 and 1, respectively, are classified as probable young stars (ages < 20 Myr) according to our analysis. Another object in Chamaeleon I located slightly above the 1 Myr isochrone is classified as a possible young star. All these objects are diskless stars with masses in the range 0.3M-1.4MSun, and ages consistent with those reported for the corresponding confirmed members. They tend to be located at the boundaries of or outside the dark clouds, preferably to the north-east and south-east in the case of Chamaeleon I, and to the north-east in the case of Chamaeleon II. We conclude that the kinematical population of Chamaeleon I and II could be larger and spread over a larger area of the sky than suggested by previous studies.