The Non-Linear Schrodinger Equation with a periodic {bf{$delta$}}--interaction


Abstract in English

We study the existence and stability of the standing waves for the periodic cubic nonlinear Schrodinger equation with a point defect determined by a periodic Dirac distribution at the origin. This equation admits a smooth curve of positive periodic solutions in the form of standing waves with a profile given by the Jacobi elliptic function of dnoidal type. Via a perturbation method and continuation argument, we obtain that in the case of an attractive defect the standing wave solutions are stable in $H^1_{per}$ with respect to perturbations which have the same period as the wave itself. In the case of a repulsive defect, the standing wave solutions are stable in the subspace of even functions of $H^1_{per}$ and unstable in $H^1_{per}$ with respect to perturbations which have the same period as the wave itself.

Download