No Arabic abstract
The origin of the high-energy emission of blazars is still a matter of debate. To investigate the emission mechanism of extragalactic outflows and to pin down the location of the emission, we have constructed a broadband spectral energy distribution (SED) database covering from the radio to the gamma-ray band for the complete MOJAVE sample, which consists of 135 relativistically beamed AGN with well-studied parsec-scale jets. Typically, the broadband SEDs of blazars shows a double-humped profile. It is believed that the lower-energy hump is due to synchrotron emission from the radio jet, and the higher-energy hump is generated by i) inverse-Compton upscattered seed photons (leptonic), ii) proton-induced shower (hadronic). Combining the results of high-resolution VLBI observations and the gamma-ray properties of the MOJAVE sources, we attempt to reveal the origin of the high-energy emission in relativistic jets, and search for correlations between VLBI and high-energy properties.
I review constraints on the physical properties of AGN jets revealed through Very Long Baseline Interferometry (VLBI) studies of the structure and time-evolution of parsec-scale jets, including recent results from the MOJAVE program. In particular I focus on constraints available from very long time baseline studies which probe a wide range of jet behavior over many outbursts. Kinematic studies of propagating jet features find an apparent speed distribution that peaks around 10c for blazars, with speeds up to 50c observed. These observed speeds require Lorentz factors at least as large, implying that parsec-scale Lorentz factors up to 10-20 are common for blazars with a tail up to ~ 50. Jet flows are still becoming organized on these scales as evidenced by the high incidence of non-radial motions and/or accelerations of jet features (including increases and decreases in apparent speed and direction). Changes in Lorentz factors of propagating jet features appear to play a significant role in the observed accelerations, and while the connection between acceleration of jet features and the underlying flow is not clear, the pattern of observed accelerations suggest the flow may increase in speed near the base of the jet and decrease further out. In some jets, ejections of new features span a range of ejection angles over many epochs, tracing out wider opening angles on parsec-scales than are apparent in single epoch observations.
In this paper we report on the broadband X-ray properties of a complete sample of 33 absorbed Seyfert galaxies hard X-ray selected with integral. The high quality broadband spectra obtained with both xmm, and integral-IBIS data are well reproduced with an absorbed primary emission with a high energy cutoff and its scattered fraction below 2-3 keV, plus the Compton reflection features. A high energy cut-off is found in 30% of the sample, with an average value below 150 keV. The diagnostic plot NH vs Fobs(2-10 keV)/F(20-100 keV) allowed the isolation of the Compton thick objects, and may represent a useful tool for future hard X-ray observations of newly discovered AGN. We are unable to associate the reflection components with the absorbing gas as a torus, a more complex scenario being necessary. In the Compton thin sources, a fraction (but not all) of the Fe K line needs to be produced in a gas possibly associated with the optical Broad Line Region, responsible also for the absorption. We still need a Compton thick medium (not intercepting the line of sight) likely associated to a torus, which contributes to the Fe line intensity and produces the observed reflection continuum above 10 keV. The so-called Iwasawa-Taniguchi effect can not be confirmed with our data. Finally, the comparison with a sample of unobscured AGN shows that, type 1 and type 2 (once corrected for absorption) Seyfert are characterized by the same nuclear/accretion properties (luminosity, bolometric luminosity, Eddington ratio), supporting the unified view.
Large scale X-ray jets that extend to >100 kpc distances from the host galaxy indicate the importance of jets interactions with the environment on many different physical scales. Morphology of X-ray clusters indicate that the radio-jet activity of a cD galaxy is intermittent. This intermittency might be a result of a feedback and/or interactions between galaxies within the cluster. Here we consider the radiation pressure instability operating on short timescales (<10^5 years) as the origin of the intermittent behaviour. We test whether this instability can be responsible for short ages (< 10^4 years) of Compact Symmetric Objects measured by hot spots propagation velocities in VLBI observations. We model the accretion disk evolution and constrain model parameters that may explain the observed compact radio structures and over-abundance of GPS sources. We also describe effects of consequent outbursts.
We used 15 GHz multi-epoch Very Long Baseline Array (VLBA) polarization sensitive observations of 484 sources within a time interval 1996--2016 from the MOJAVE program, and also from the NRAO data archive. We have analyzed the linear polarization characteristics of the compact core features and regions downstream, and their changes along and across the parsec-scale active galactic nuclei (AGN) jets. We detected a significant increase of fractional polarization with distance from the radio core along the jet as well as towards the jet edges. Compared to quasars, BL Lacs have a higher degree of polarization and exhibit more stable electric vector position angles (EVPAs) in their core features and a better alignment of the EVPAs with the local jet direction. The latter is accompanied by a higher degree of linear polarization, suggesting that compact bright jet features might be strong transverse shocks, which enhance magnetic field regularity by compression.
The reionization of the Universe ends the dark ages that started after the recombination era. In the case of H, reionization finishes around $zsim 6$. Faint star-forming galaxies are the best candidate sources of the H-ionizing radiation, although active galactic nuclei may have also contributed. We have explored whether the termination regions of the jets from active galactic nuclei may have contributed significantly to the ionization of H in the late reionization epoch, around $zsim 6-7$. We assumed that, as it has been proposed, active galactic nuclei at $zsim 6$ may have presented a high jet fraction, accretion rate, and duty cycle, and that non-thermal electrons contribute significantly to the pressure of jet termination regions. Empirical black-hole mass functions were adopted to characterize the population of active galactic nuclei. From all this, estimates were derived for the isotropic H-ionizing radiation produced in the jet termination regions, at $zsim 6$, through inverse Compton scattering off CMB photons. We find that the termination regions of the jets of active galactic nuclei may have radiated most of their energy in the form of H-ionizing radiation at $zsim 6$. For typical black-hole mass functions at that redshift, under the considered conditions (long-lasting, common, and very active galactic nuclei with jets), the contribution of these jets to maintain (and possibly enhance) the ionization of H may have been non-negligible. We conclude that the termination regions of jets from active galactic nuclei could have had a significant role in the reionization of the Universe at $zgtrsim 6$.