Recent experiments show that spin thermoelectrics is a promising approach to generate spin voltages. While spin chemical potentials are often limited to a surface layer of the order of the spin diffusion length, we show that thermoelectrically induced spin chemical potentials can extend much further in itinerant ferromagnets with paramagnetic impurities. In some cases, conservation laws, e.g., for a combination of spin and heat currents, give rise to a linear spin voltage profile. More generally, we find quasilinear profiles involving a spin thermoelectric length scale which far exceeds the spin diffusion length.