Do you want to publish a course? Click here

Disk-Loss and Disk Renewal Phases in Classical Be Stars II. Detailed Analysis of Spectropolarimetric Data

174   0   0.0 ( 0 )
 Added by Zachary Draper
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

In Wisniewski et al. 2010, paper I, we analyzed 15 years of spectroscopic and spectropolarimetric data from the Ritter and Pine Bluff Observatories of 2 Be stars, 60 Cygni and {pi} Aquarii, when a transition from Be to B star occurred. Here we anaylize the intrinsic polarization, where we observe loop-like structures caused by the rise and fall of the polarization Balmer Jump and continuum V-band polarization being mismatched temporally with polarimetric outbursts. We also see polarization angle deviations from the mean, reported in paper I, which may be indicative of warps in the disk, blobs injected at an inclined orbit, or spiral density waves. We show our ongoing efforts to model time dependent behavior of the disk to constrain the phenomena, using 3D Monte Carlo radiative transfer codes.



rate research

Read More

(Abridged) Classical Be stars occasionally transition from having a gaseous circumstellar disk (Be phase) to a state in which all observational evidence for the presence of these disks disappears (normal B-star phase). We present one of the most comprehensive spectropolarimetric views to date of such a transition for two Be stars, pi Aquarii and 60 Cygni. 60 Cygs disk loss episode was characterized by a monotonic decrease in emission strength over a time-scale of 1000 days, consistent with the viscous time-scale of the disk, assuming alpha is 0.14. pi Aqrs disk loss was episodic in nature and occurred over a time-scale of 2440 days. An observed time lag between the behavior of the polarization and H-alpha in both stars indicates the disk clearing proceeded in an inside-out manner. We determine the position angle of the intrinsic polarization to be 166.7 +/- 0.1 degrees for pi Aqr and 107.7 +/- 0.4 degrees for 60 Cyg, and model the observed polarization during the quiescent diskless phase of each star to determine the interstellar polarization along the line of sight. Minor outbursts observed during the quiescent phase of each star shared similar lifetimes as those previously reported for mu Cen, suggesting that the outbursts represent the injection and subsequent viscous dissipation of individual blobs of material into the inner circumstellar environments of these stars. We also observe deviations from the mean intrinsic polarization position angle during polarization outbursts in each star, indicating deviations from axisymmetry. We propose that these deviations might be indicative of the injection (and subsequent circularization) of new blobs into the inner disk, either in the plane of the bulk of the disk material or in a slightly inclined (non-coplanar) orbit.
Recent observational and theoretical studies of classical Be stars have established the utility of polarization color diagrams (PCD) in helping to constrain the time-dependent mass decretion rates of these systems. We expand on our pilot observational study of this phenomenon, and report the detailed analysis of a long-term (1989-2004) spectropolarimetric survey of 9 additional classical Be stars, including systems exhibiting evidence of partial disk-loss/disk-growth episodes as well as systems exhibiting long-term stable disks. After carefully characterizing and removing the interstellar polarization along the line of sight to each of these targets, we analyze their intrinsic polarization behavior. We find that many steady-state Be disks pause at the top of the PCD, as predicted by theory. We also observe sharp declines in the Balmer jump polarization for later spectral type, near edge-on steady-state disks, again as recently predicted by theory, likely caused when the base density of the disk is very high, and the outer region of the edge-on disk starts to self absorb a significant number of Balmer jump photons. The intrinsic $V$-band polarization and polarization position angle of $gamma$ Cas exhibits variations that seem to phase with the orbital period of a known one-armed density structure in this disk, similar to the theoretical predictions of Halonen & Jones. We also observe stochastic jumps in the intrinsic polarization across the Balmer jump of several known Be+sdO systems, and speculate that the thermal inflation of part of the outer region of these disks could be responsible for producing this observational phenomenon. Finally, we estimate the base densities of this sample of stars to be between $approx 8times 10^{-11}$ to $approx 4 times 10^{-12},rm g cm^{-3}$ during quasi steady state periods given there maximum observed polarization.
In order to study the growth and evolution of circumstellar disks around classical Be stars, we analyze optical time-series photometry from the KELT survey with simultaneous infrared and visible spectroscopy from the APOGEE survey and BeSS database for a sample of 160 Galactic classical Be stars. The systems studied here show variability including transitions from a diskless to a disk-possessing state (and vice versa), and persistent disks that vary in strength, being replenished at either regularly or irregularly occurring intervals. We detect disk-building events (outbursts) in the light curves of 28% of our sample. Outbursts are more commonly observed in early- (57%), compared to mid- (27%) and late-type (8%) systems. A given system may show anywhere between 0 -- 40 individual outbursts in its light curve, with amplitudes ranging up to $sim$0.5 mag and event durations between $sim$2 -- 1000 days. We study how both the photometry and spectroscopy change together during active episodes of disk growth or dissipation, revealing details about the evolution of the circumstellar environment. We demonstrate that photometric activity is linked to changes in the inner disk, and show that, at least in some cases, the disk growth process is asymmetrical. Observational evidence of Be star disks both growing and clearing from the inside out is presented. The duration of disk buildup and dissipation phases are measured for 70 outbursts, and we find that the average outburst takes about twice as long to dissipate as it does to build up in optical photometry. Our analysis hints that dissipation of the inner disk occurs relatively slowly for late-type Be stars.
We have obtained multi-wavelength observations of compact Galactic planetary nebulae (PNe) to probe post-Asymptotic Giant Branch (AGB) evolution from the onset of nebular ejection. We analyze new observations from HST to derive the masses and evolutionary status of their central stars (CSs) in order to better understand the relationship between the CS properties and those of the surrounding nebulae. We also compare this sample with others we obtained using the same technique in different metallicity environments: the Large and Small Magellanic Clouds. We work with HST/WFC3 images of 51 targets obtained in a snapshot survey (GO-11657). The high spatial resolution of HST allows us to resolve these compact PNe and distinguish the CS emission from that of their surrounding PNe. The targets were imaged through the filters F200LP, F350LP, and F814W from which we derive Johnson V and I magnitudes. We derive CS bolometric luminosities and effective temperatures using the Zanstra technique, from a combination of HST photometry and ground-based spectroscopic data. We present new unique photometric measurements of 50 CSs, and derived effective temperatures and luminosities for most of them. Central star masses for 23 targets were derived by placing the stars on a temperature-luminosity diagram and compare their location with the best available single star post-AGB evolutionary tracks, the remaining masses were indeterminate most likely because of underestimates of the stellar temperature, or because of substantial errors in the adopted statistical distances to these objects. The distribution of CS masses in the sample of compact PNe is different than sample in the LMC and SMC, but with a median mass of 0.59 solar masses it is similar to other Galactic samples. We conclude that the compact nature of many of the PNe is a result of their large distance, rather than their physical dimension.
Investigating the evolution of protoplanetary disks is crucial for our understanding of star and planet formation. Several theoretical and observational studies have been performed in the last decades to advance this knowledge. FT Tauri is a young star in the Taurus star forming region that was included in a number of spectroscopic and photometric surveys. We investigate the properties of the star, the circumstellar disk, and the accretion and ejection processes and propose a consistent gas and dust model also as a reference for future observational studies. We performed a multi-wavelength data analysis to derive the basic stellar and disk properties, as well as mass accretion/outflow rate from TNG-Dolores, WHT-Liris, NOT-Notcam, Keck-Nirspec, and Herschel-Pacs spectra. From the literature, we compiled a complete Spectral Energy Distribution. We then performed detailed disk modeling using the MCFOST and ProDiMo codes. Multi-wavelengths spectroscopic and photometric measurements were compared with the reddened predictions of the codes in order to constrain the disk properties. This object can serve as a benchmark for primordial disks with significant mass accretion rate, high gas content and typical size.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا