Controlling interactions between cold molecules using external fields can elucidate the role of quantum mechanics in molecular collisions. We create a new experimental platform in which ultracold rubidium atoms and cold ammonia molecules are separately trapped by magnetic and electric fields and then combined to study collisions. We observe inelastic processes that are faster than expected from earlier field-free calculations. We use quantum scattering calculations to show that electric fields can have a major effect on collision outcomes, even in the absence of dipole-dipole interactions.