Under the assumption that dark matter is made of new particles, annihilations of those are required to reproduce the correct dark matter abundance in the Universe. This process can occur in dense regions of our Galaxy such as the Galactic center, dwarf galaxies and other types of sub-haloes. High-energy gamma-rays are expected to be produced in dark matter particle collisions and could be detected by ground-based Cherenkov telescopes such as HESS, MAGIC and VERITAS. The main experimental challenges to get constraints on particle dark matter models are reviewed, making explicit the pros and cons that are inherent to this technique, together with the current results from running observatories. Main results concerning dark matter searches towards selected targets with Cherenkov telescopes are presented. Eventually, a focus is made on a new way to perform a search for Galactic subhaloes with such telescopes, based on wide-field surveys, as well as future prospects.