Do you want to publish a course? Click here

Quantum Hall Effect from the Topological Surface States of Strained Bulk HgTe

283   0   0.0 ( 0 )
 Added by Christoph Br\\\"une
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report transport studies on a three dimensional, 70 nm thick HgTe layer, which is strained by epitaxial growth on a CdTe substrate. The strain induces a band gap in the otherwise semi-metallic HgTe, which thus becomes a three dimensional topological insulator. Contributions from residual bulk carriers to the transport properties of the gapped HgTe layer are negligible at mK temperatures. As a result, the sample exhibits a quantized Hall effect that results from the 2D single cone Dirac-like topological surface states.



rate research

Read More

A prominent feature of topological insulators (TIs) is the surface states comprising of spin-nondegenerate massless Dirac fermions. Recent technical advances have made it possible to address the surface transport properties of TI thin films while tuning the Fermi levels of both top and bottom surfaces across the Dirac point by electrostatic gating. This opened the window for studying the spin-nondegenerate Dirac physics peculiar to TIs. Here we report our discovery of a novel planar Hall effect (PHE) from the TI surface, which results from a hitherto-unknown resistivity anisotropy induced by an in-plane magnetic field. This effect is observed in dual-gated devices of bulk-insulating Bi$_{2-x}$Sb$_{x}$Te$_{3}$ thin films, in which both top and bottom surfaces are gated. The origin of PHE is the peculiar time-reversal-breaking effect of an in-plane magnetic field, which anisotropically lifts the protection of surface Dirac fermions from back-scattering. The key signature of the field-induced anisotropy is a strong dependence on the gate voltage with a characteristic two-peak structure near the Dirac point which is explained theoretically using a self-consistent T-matrix approximation. The observed PHE provides a new tool to analyze and manipulate the topological protection of the TI surface in future experiments.
Using density functional electronic structure calculations, we establish the consequences of surface termination and modification on protected surface-states of metacinnabar (beta-HgS). Whereas we find that the Dirac cone is isotropic and well-separated from the valence band for the (110) surface, it is highly anisotropic at the pure (001) surface. We demonstrate that the anisotropy is modified by surface passivation because the topological surface-states include contributions from dangling bonds. Such dangling bonds exist on all pure surfaces within the whole class HgX with X = S, Se, or Te and directly affect the properties of the Dirac cone. Surface modifications also alter the spatial location (depth and decay length) of the topologically protected edge-states which renders them essential for the interpretation of photoemission data.
Preceded by the discovery of topological insulators, Dirac and Weyl semimetals have become a pivotal direction of research in contemporary condensed matter physics. While easily accessible from a theoretical viewpoint, these topological semimetals pose a serious challenge in terms of experimental synthesis and analysis to allow for their unambiguous identification. In this work, we report on detailed transport experiments on compressively strained HgTe. Due to the superior sample quality in comparison to other topological semimetallic materials, this enables us to resolve the interplay of topological surface states and semimetallic bulk states to an unprecedented degree of precision and complexity. As our gate design allows us to precisely tune the Fermi level at the Weyl and Dirac points, we identify a magnetotransport regime dominated by Weyl/Dirac bulk state conduction for small carrier densities and by topological surface state conduction for larger carrier densities. As such, similar to topological insulators, HgTe provides the archetypical reference for the experimental investigation of topological semimetals.
79 - Hongming Weng , Rui Yu , Xiao Hu 2015
Over a long period of exploration, the successful observation of quantized version of anomalous Hall effect (AHE) in thin film of magnetically-doped topological insulator completed a quantum Hall trio---quantum Hall effect (QHE), quantum spin Hall effect (QSHE), and quantum anomalous Hall effect (QAHE). On the theoretical front, it was understood that intrinsic AHE is related to Berry curvature and U(1) gauge field in momentum space. This understanding established connection between the QAHE and the topological properties of electronic structures characterized by the Chern number. With the time reversal symmetry broken by magnetization, a QAHE system carries dissipationless charge current at edges, similar to the QHE where an external magnetic field is necessary. The QAHE and corresponding Chern insulators are also closely related to other topological electronic states, such as topological insulators and topological semimetals, which have been extensively studied recently and have been known to exist in various compounds. First-principles electronic structure calculations play important roles not only for the understanding of fundamental physics in this field, but also towards the prediction and realization of realistic compounds. In this article, a theoretical review on the Berry phase mechanism and related topological electronic states in terms of various topological invariants will be given with focus on the QAHE and Chern insulators. We will introduce the Wilson loop method and the band inversion mechanism for the selection and design of topological materials, and discuss the predictive power of first-principles calculations. Finally, remaining issues, challenges and possible applications for future investigations in the field will be addressed.
332 - C. Thomas , O. Crauste , B. Haas 2017
We demonstrate evidences of electronic transport via topological Dirac surface states in a thin film of strained HgTe. At high perpendicular magnetic fields, we show that the electron transport reaches the quantum Hall regime with vanishing resistance. Furthermore, quantum Hall transport spectroscopy reveals energy splittings of relativistic Landau levels specific to coupled Dirac surface states. This study provides new insights in the quantum Hall effect of topological insulator (TI) slabs, in the cross-over regime between two- and three-dimensional TIs, and in the relevance of thin TI films to explore novel circuit functionalities in spintronics and quantum nanoelectronics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا