Do you want to publish a course? Click here

Nucleon form factors and structure functions

222   0   0.0 ( 0 )
 Added by Dirk Pleiter
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

We give an update on our ongoing efforts to compute the nucleons form factors and moments of structure functions using Nf=2 flavours of non-perturbatively improved Clover fermions. We focus on new results obtained on gauge configurations where the pseudo-scalar meson mass is in the range of 170-270 MeV. We will compare our results with various estimates obtained from chiral effective theories since we have some overlap with the quark mass region where results from such theories are believed to be applicable.



rate research

Read More

112 - C. Alexandrou 2019
The role of the strange quarks on the low-energy interactions of the proton can be probed through the strange electromagnetic form factors. Knowledge of these form factors provides essential input for parity-violating processes and contributes to the understanding of the sea quark dynamics. We determine the strange electromagnetic form factors of the nucleon within the lattice formulation of Quantum Chromodynamics using simulations that include light, strange and charm quarks in the sea all tuned to their physical mass values. We employ state-of-the-art techniques to accurately extract the form factors for values of the momentum transfer square up to 0.8~GeV$^2$. We find that both the electric and magnetic form factors are statistically non-zero. We obtain for the strange magnetic moment $mu^s=-0.017(4)$, the strange magnetic radius $langle r^2_M rangle^s=-0.015(9)$~fm$^2$, and the strange charge radius $langle r^2_E rangle^s=-0.0048(6)$~fm$^2$.
The fomalism is developed to express nucleon matrix elements of the electromagnetic current in terms of form factors consistent with the translational, rotational, and parity symmetries of a cubic lattice. We calculate the number of these form factors and show how appropriate linear combinations approach the continuum limit.
The calculation of the nucleon strangeness form factors from N_f=2+1 clover fermion lattice QCD is presented. Disconnected insertions are evaluated using the Z(4) stochastic method, along with unbiased subtractions from the hopping parameter expansion. We find that increasing the number of nucleon sources for each configuration improves the signal significantly. We obtain G_M^s(0) = -0.017(25)(07), which is consistent with experimental values, and has an order of magnitude smaller error. Preliminary results for the strangeness contribution to the second moment of the parton distribution function are also presented.
165 - C. Alexandrou 2007
We present results on the nucleon axial vector form factors $G_A(q^2)$ and $G_p(q^2)$ in the quenched theory and using two degenerate flavors of dynamical Wilson fermions for momentum transfer squared from about 0.1 to about 2 GeV^2 and for pion masses in the range of 380 to 600 MeV. We also present results on the corresponding N to Delta axial vector transition form factors $C_5^A(q^2)$ and $C_6^A(q^2)$ using, in addition to Wilson fermions, domain wall valence quarks and dynamical staggered sea quarks provided by the MILC collaboration.
242 - C. Alexandrou 2010
We present results on the nucleon axial form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length $L=2.1$ fm and $L=2.8$ fm. Cut-off effects are investigated using three different values of the lattice spacings, namely $a=0.089$ fm, $a=0.070$ fm and $a=0.056$ fm. The nucleon axial charge is obtained in the continuum limit and chirally extrapolated to the physical pion mass enabling comparison with experiment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا