Do you want to publish a course? Click here

Analog of Electromagnetically Induced Transparency Effect for Two Nano/Micro-mechanical Resonators Coupled With Spin Ensemble

118   0   0.0 ( 0 )
 Added by Yue Chang
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study a hybrid nano-mechanical system coupled to a spin ensemble as a quantum simulator to favor a quantum interference effect, the electromagnetically induced transparency (EIT). This system consists of two nano-mechanical resonators (NAMRs), each of which coupled to a nuclear spin ensemble. It could be regarded as a crucial element in the quantum network of NAMR arrays coupled to spin ensembles. Here, the nuclear spin ensembles behave as a long-lived transducer to store and transfer the NAMRs quantum information. This system shows the analog of EIT effect under the driving of a probe microwave field. The double-EIT phenomenon emerges in the large $N$ (the number of the nuclei) limit with low excitation approximation, because the interactions between the spin ensemble and the two NAMRs are reduced to the coupling of three harmonic oscillators. Furthermore, the group velocity is reduced in the two absorption windows.



rate research

Read More

We study electromagnetically induced transparency (EIT) of a weakly interacting cold Rydberg gas. We show that the onset of interactions is manifest as a depopulation of the Rydberg state and numerically model this effect by adding a density-dependent non-linear term to the optical Bloch equations. In the limit of a weak probe where the depopulation effect is negligible, we observe no evidence of interaction induced decoherence and obtain a narrow Rydberg dark resonance with a linewidth of <600 kHz, limited by the Rabi frequency of the coupling beam
In this work we theoretically investigate a hybrid system of two optomechanically coupled resonators, which exhibits induced transparency. This is realized by coupling an optical ring resonator to a toroid. In the semiclassical analyses, the system displays bistabilities, isolated branches (isolas) and self-sustained oscillation dynamics. Furthermore, we find that the induced transparency transparency window sensitively relies on the mechanical motion. Based on this fact, we show that the described system can be used as a weak force detector and the optimal sensitivity can beat the standard quantum limit without using feedback control or squeezing under available experimental conditions.
136 - Hui Wang , Xiu Gu , Yu-xi Liu 2014
Some optomechanical systems can be transparent to a probe field when a strong driving field is applied. These systems can provide an optomechanical analogue of electromagnetically-induced transparency (EIT). We study the transmission of a probe field through a hybrid optomechanical system consisting of a cavity and a mechanical resonator with a two-level system (qubit). The qubit might be an intrinsic defect inside the mechanical resonator, a superconducting artificial atom, or another two-level system. The mechanical resonator is coupled to the cavity field via radiation pressure and to the qubit via the Jaynes-Cummings interaction. We find that the dressed two-level system and mechanical phonon can form two sets of three-level systems. Thus, there are two transparency windows in the discussed system. We interpret this effect as an optomechanical analog of two-color EIT (or double-EIT). We demonstrate how to switch between one and two EIT windows by changing the transition frequency of the qubit. We show that the absorption and dispersion of the system are mainly affected by the qubit-phonon coupling strength and the transition frequency of the qubit.
210 - G. W. Lin , Y. H. Qi , X. M. Lin 2013
We consider the dynamics of intracavity electromagnetically induced transparency (EIT) in an ensemble of strongly interacting Rydberg atoms. By combining the advantage of variable cavity lifetimes with intracavity EIT and strongly interacting Rydberg dark-state polaritons, we show that such intracavity EIT system could exhibit very strong photon blockade effect.
We show that an alkali atom with a tripod electronic structure can yield rich electromagnetically induced transparency phenomena even at room temperature. In particular we introduce double-double electromagnetically induced transparency wherein signal and probe fields each have two transparency windows. Their group velocities can be matched in either the first or second pair of transparency windows. Moreover signal and probe fields can each experience coherent gain in the second transparency windows. We explain using a semi-classical-dressed-picture to connect the tripod electronic structure to a double-Lambda scheme.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا