Do you want to publish a course? Click here

Quantum simulations of thermodynamic properties of strongly coupled quark-gluon plasma

176   0   0.0 ( 0 )
 Added by Yuri B. Ivanov
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

A strongly coupled quark-gluon plasma (QGP) of heavy constituent quasi-particles is studied by a path-integral Monte-Carlo method. This approach is a quantum generalization of the model developed by Gelman, Shuryak and Zahed. It is shown that this method is able to reproduce the QCD lattice equation of state and also yields valuable insight into the internal structure of the QGP. The results indicate that the QGP reveals liquid-like rather than gas-like properties. At temperatures just above the critical one it was found that bound quark-antiquark states still survive. These states are bound by effective string-like forces and turns out to be colorless. At the temperature as large as twice the critical one no bound states are observed. Quantum effects turned out to be of prime importance in these simulations.



rate research

Read More

A strongly coupled quark-gluon plasma (QGP) of heavy constituent quasiparticles is studied by a path-integral Monte-Carlo method, which improves the corresponding classical simulations by extending them to the quantum regime. It is shown that this method is able to reproduce the lattice equation of state and also yields valuable insight into the internal structure of the QGP. The results indicate that the QGP reveals liquid-like rather than gas-like properties. At temperatures just above the critical one it was found that bound quark-antiquark states still survive. These states are bound by effective string-like forces. Quantum effects turned out to be of prime importance in these simulations.
144 - Edward Shuryak 2008
This review cover our current understanding of strongly coupled Quark-Gluon Plasma (sQGP), especially theoretical progress in (i) explaining the RHIC data by hydrodynamics, (ii) describing lattice data using electric-magnetic duality; (iii) understanding of gauge-string duality known as AdS/CFT and its application for conformal plasma. In view of interdisciplinary nature of the subject, we include brief introduction into several topics for pedestrians. Some fundamental questions addressed are: Why is sQGP such a good liquid? What is the nature of (de)confinement and what do we know about magnetic objects creating it? Do they play any important role in sQGP physics? Can we understand the AdS/CFT predictions, from the gauge theory side? Can they be tested experimentally? Can AdS/CFT duality help us understand rapid equilibration/entropy production? Can we work out a complete dynamical gravity dual to heavy ion collisions?
A strongly coupled plasma of quark and gluon quasiparticles at temperatures from $ 1.1 T_c$ to $3 T_c$ is studied by path integral Monte Carlo simulations. This method extends previous classical nonrelativistic simulations based on a color Coulomb interaction to the quantum regime. We present the equation of state and find good agreement with lattice results. Further, pair distribution functions and color correlation functions are computed indicating strong correlations and liquid-like behavior.
In this paper we study the real-time evolution of heavy quarkonium in the quark-gluon plasma (QGP) on the basis of the open quantum systems approach. In particular, we shed light on how quantum dissipation affects the dynamics of the relative motion of the quarkonium state over time. To this end we present a novel non-equilibrium master equation for the relative motion of quarkonium in a medium, starting from Lindblad operators derived systematically from quantum field theory. In order to implement the corresponding dynamics, we deploy the well established quantum state diffusion method. In turn we reveal how the full quantum evolution can be cast in the form of a stochastic non-linear Schrodinger equation. This for the first time provides a direct link from quantum chromodynamics (QCD) to phenomenological models based on non-linear Schrodinger equations. Proof of principle simulations in one-dimension show that dissipative effects indeed allow the relative motion of the constituent quarks in a quarkonium at rest to thermalize. Dissipation turns out to be relevant already at early times well within the QGP lifetime in relativistic heavy ion collisions.
246 - Berndt Muller 2021
Brief review of the hadronic probes that are used to diagnose the quark-gluon plasma produced in relativistic heavy ion collisions and interrogate its properties. Emphasis is placed on probes that have significantly impacted our understanding of the nature of the quark-gluon plasma and confirmed its formation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا