Do you want to publish a course? Click here

High quality factor nitride-based optical cavities: microdisks with embedded GaN/Al(Ga)N quantum dots

116   0   0.0 ( 0 )
 Added by Thierry Guillet
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We compare the quality factor values of the whispery gallery modes of microdisks incorporating GaN quantum dots (QDs) grown on AlN and AlGaN barriers by performing room temperature photoluminescence (PL) spectroscopy. The PL measurements show a large number of high Q factor (Q) resonant modes on the whole spectrum which allows us to identify the different radial mode families and to compare them with simulations. We report a considerable improvement of the Q factor which reflect the etching quality and the relatively low cavity loss by inserting QDs into the cavity. GaN/AlN QDs based microdisks show very high Q values (Q > 7000) whereas the Q factor is only up to 2000 in microdisks embedding QDs grown on AlGaN barrier layer. We attribute this difference to the lower absorption below bandgap for AlN barrier layers at the energies of our experimental investigation.



rate research

Read More

Si3N4 is an excellent material for applications of nanophotonics at visible wavelengths due to its wide bandgap and moderately large refractive index (n $approx$ 2.0). We present the fabrication and characterization of Si3N4 photonic crystal nanobeam cavities for coupling to diamond nanocrystals and Nitrogen-Vacancy centers in a cavity QED system. Confocal micro-photoluminescence analysis of the nanobeam cavities demonstrates quality factors up to Q ~ 55,000, which is limited by the resolution of our spectrometer. We also demonstrate coarse tuning of cavity resonances across the 600-700nm range by lithographically scaling the size of fabricated devices. This is an order of magnitude improvement over previous SiNx cavities at this important wavelength range.
We report on the exciton spin dynamics of nanowire embedded GaN/AlN Quantum Dots (QDs) investigated by time-resolved photoluminescence spectroscopy. Under a linearly polarized quasiresonant excitation we evidence the quenching of the exciton spin relaxation and a temperature insensitive degree of the exciton linear polarization, demonstrating the robustness of the optical alignment of the exciton spin in these nanowire embedded QDs. A detailed examination of the luminescence polarization angular dependence shows orthogonal linear exciton eigenstates with no preferential crystallographic orientation.
We investigate the transport of dipolar indirect excitons along the growth plane of polar (Al,Ga)N/GaN quantum well structures by means of spatially- and time-resolved photoluminescence spectroscopy. The transport in these strongly disordered quantum wells is activated by dipole-dipole repulsion. The latter induces an emission blue shift that increases linearly with exciton density, whereas the radiative recombination rate increases exponentially. Under continuous, localized excitation, we measure a continuous red shift of the emission, as excitons propagate away from the excitation spot. This shift corresponds to a steady-state gradient of exciton density, measured over several tens of micrometers. Time-resolved micro-photoluminescence experiments provide information on the dynamics of recombination and transport of dipolar excitons. We account for the ensemble of experimental results by solving the nonlinear drift-diffusion equation. Quantitative analysis suggests that in such structures, exciton propagation on the scale of 10 to 20 microns is mainly driven by diffusion, rather than by drift, due to the strong disorder and the presence of nonradiative defects. Secondary exciton creation, most probably by the intense higher-energy luminescence, guided along the sample plane, is shown to contribute to the exciton emission pattern on the scale up to 100 microns. The exciton propagation length is strongly temperature dependent, the emission being quenched beyond a critical distance governed by nonradiative recombination.
Several of the key issues of planar (Al,Ga)N-based deep-ultraviolet light emitting diodes could potentially be overcome by utilizing nanowire heterostructures, exhibiting high structural perfection and improved light extraction. Here, we study the spontaneous emission of GaN/(Al,Ga)N nanowire ensembles grown on Si(111) by plasma-assisted molecular beam epitaxy. The nanowires contain single GaN quantum disks embedded in long (Al,Ga)N nanowire segments essential for efficient light extraction. These quantum disks are found to exhibit intense emission at unexpectedly high energies, namely, significantly above the GaN bandgap, and almost independent of the disk thickness. An in-depth investigation of the actual structure and composition of the nanowires reveals a spontaneously formed Al gradient both along and across the nanowire, resulting in a complex core/shell structure with an Al deficient core and an Al rich shell with continuously varying Al content along the entire length of the (Al,Ga)N segment. This compositional change along the nanowire growth axis induces a polarization doping of the shell that results in a degenerate electron gas in the disk, thus screening the built-in electric fields. The high carrier density not only results in the unexpectedly high transition energies, but also in radiative lifetimes depending only weakly on temperature, leading to a comparatively high internal quantum efficiency of the GaN quantum disks up to room temperature.
We investigate the design, fabrication and experimental characterization of high Quality factor photonic crystal nanobeam cavities in silicon. Using a five-hole tapered 1D photonic crystal mirror and precise control of the cavity length, we designed cavities with theoretical Quality factors as high as 14 million. By detecting the cross-polarized resonantly scattered light from a normally incident laser beam, we measure a Quality factor of nearly 750,000. The effect of cavity size on mode frequency and Quality factor was simulated and then verified experimentally.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا