No Arabic abstract
The performance of the Planck instruments in space is enabled by their low operating temperatures, 20K for LFI and 0.1K for HFI, achieved through a combination of passive radiative cooling and three active mechanical coolers. The scientific requirement for very broad frequency coverage led to two detector technologies with widely different temperature and cooling needs. Active coolers could satisfy these needs; a helium cryostat, as used by previous cryogenic space missions (IRAS, COBE, ISO, Spitzer, AKARI), could not. Radiative cooling is provided by three V-groove radiators and a large telescope baffle. The active coolers are a hydrogen sorption cooler (<20K), a 4He Joule-Thomson cooler (4.7K), and a 3He-4He dilution cooler (1.4K and 0.1K). The flight system was at ambient temperature at launch and cooled in space to operating conditions. The HFI bolometer plate reached 93mK on 3 July 2009, 50 days after launch. The solar panel always faces the Sun, shadowing the rest of Planck, andoperates at a mean temperature of 384K. At the other end of the spacecraft, the telescope baffle operates at 42.3K and the telescope primary mirror operates at 35.9K. The temperatures of key parts of the instruments are stabilized by both active and passive methods. Temperature fluctuations are driven by changes in the distance from the Sun, sorption cooler cycling and fluctuations in gas-liquid flow, and fluctuations in cosmic ray flux on the dilution and bolometer plates. These fluctuations do not compromise the science data.
The European Space Agencys Planck satellite was launched on 14 May 2009, and has been surveying the sky stably and continuously since 13 August 2009. Its performance is well in line with expectations, and it will continue to gather scientific data until the end of its cryogenic lifetime. We give an overview of the history of Planck in its first year of operations, and describe some of the key performance aspects of the satellite. This paper is part of a package submitted in conjunction with Plancks Early Release Compact Source Catalogue, the first data product based on Planck to be released publicly. The package describes the scientific performance of the Planck payload, and presents results on a variety of astrophysical topics related to the sources included in the Catalogue, as well as selected topics on diffuse emission.
The Planck High Frequency Instrument (HFI) is designed to measure the temperature and polarization anisotropies of the Cosmic Microwave Background and galactic foregrounds in six wide bands centered at 100, 143, 217, 353, 545 and 857 GHz at an angular resolution of 10 (100 GHz), 7 (143 GHz), and 5 (217 GHz and higher). HFI has been operating flawlessly since launch on 14 May 2009. The bolometers cooled to 100 mK as planned. The settings of the readout electronics, such as the bolometer bias current, that optimize HFIs noise performance on orbit are nearly the same as the ones chosen during ground testing. Observations of Mars, Jupiter, and Saturn verified both the optical system and the time response of the detection chains. The optical beams are close to predictions from physical optics modeling. The time response of the detection chains is close to pre-launch measurements. The detectors suffer from an unexpected high flux of cosmic rays related to low solar activity. Due to the redundancy of Plancks observations strategy, the removal of a few percent of data contaminated by glitches does not affect significantly the sensitivity. The cosmic rays heat up significantly the bolometer plate and the modulation on periods of days to months of the heat load creates a common drift of all bolometer signals which do not affect the scientific capabilities. Only the high energy cosmic rays showers induce inhomogeneous heating which is a probable source of low frequency noise.
The all-sky coverage of the Planck Early Release Compact Source Catalogue (ERCSC) provides an unsurpassed survey of galaxies at submillimetre (submm) wavelengths, representing a major improvement in the numbers of galaxies detected, as well as the range of far-IR/submm wavelengths over which they have been observed. We here present the first results on the properties of nearby galaxies using these data. We match the ERCSC catalogue to IRAS-detected galaxies in the Imperial IRAS Faint Source Redshift Catalogue (IIFSCz), so that we can measure the spectral energy distributions (SEDs) of these objects from 60 to 850 microns. This produces a list of 1717 galaxies with reliable associations between Planck and IRAS, from which we select a subset of 468 for SED studies, namely those with strong detections in the three highest frequency Planck bands and no evidence of cirrus contamination. The SEDs are fitted using parametric dust models to determine the range of dust temperatures and emissivities. We find evidence for colder dust than has previously been found in external galaxies, with T<20K. Such cold temperatures are found using both the standard single temperature dust model with variable emissivity beta, or a two dust temperature model with beta fixed at 2. We also compare our results to studies of distant submm galaxies (SMGs) which have been claimed to contain cooler dust than their local counterparts. We find that including our sample of 468 galaxies significantly reduces the distinction between the two populations. Fits to SEDs of selected objects using more sophisticated templates derived from radiative transfer models confirm the presence of the colder dust found through parameteric fitting. We thus conclude that cold (T<20K) dust is a significant and largely unexplored component of many nearby galaxies.
Planck allows unbiased mapping of Galactic sub-millimetre and millimetre emission from the most diffuse regions to the densest parts of molecular clouds. We present an early analysis of the Taurus molecular complex, on line-of-sight-averaged data and without component separation. The emission spectrum measured by Planck and IRAS can be fitted pixel by pixel using a single modified blackbody. Some systematic residuals are detected at 353 GHz and 143 GHz, with amplitudes around -7 % and +13 %, respectively, indicating that the measured spectra are likely more complex than a simple modified blackbody. Significant positive residuals are also detected in the molecular regions and in the 217 GHz and 100 GHz bands, mainly caused by to the contribution of the J=2-1 and J=1-0 12CO and 13CO emission lines. We derive maps of the dust temperature T, the dust spectral emissivity index beta, and the dust optical depth at 250 microns tau. The temperature map illustrates the cooling of the dust particles in thermal equilibrium with the incident radiation field, from 16-17 K in the diffuse regions to 13-14 K in the dense parts. The distribution of spectral indices is centred at 1.78, with a standard deviation of 0.08 and a systematic error of 0.07. We detect a significant T-beta anti-correlation. The dust optical depth map reveals the spatial distribution of the column density of the molecular complex from the densest molecular regions to the faint diffuse regions. We use near-infrared extinction and HI data at 21-cm to perform a quantitative analysis of the spatial variations of the measured dust optical depth at 250 microns per hydrogen atom tau/NH. We report an increase of tau/NH by a factor of about 2 between the atomic phase and the molecular phase, which has a strong impact on the equilibrium temperature of the dust particles.
We describe the processing of data from the Low Frequency Instrument (LFI) used in production of the Planck Early Release Compact Source Catalogue (ERCSC). In particular, we discuss the steps involved in reducing the data from telemetry packets to cleaned, calibrated, time-ordered data (TOD) and frequency maps. Data are continuously calibrated using the modulation of the temperature of the cosmic microwave background radiation induced by the motion of the spacecraft. Noise properties are estimated from TOD from which the sky signal has been removed using a generalized least square map-making algorithm. Measured 1/f noise knee-frequencies range from 100mHz at 30GHz to a few tens of mHz at 70GHz. A destriping code (Madam) is employed to combine radiometric data and pointing information into sky maps, minimizing the variance of correlated noise. Noise covariance matrices required to compute statistical uncertainties on LFI and Planck products are also produced. Main beams are estimated down to the approx -10dB level using Jupiter transits, which are also used for geometrical calibration of the focal plane.