Do you want to publish a course? Click here

The structure of the magnetic field in the massive star-forming region W75N

123   0   0.0 ( 0 )
 Added by Gabriele Surcis
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

A debated topic in star formation theory is the role of magnetic fields during the protostellar phase of high-mass stars. It is still unclear how magnetic fields influence the formation and dynamics of massive disks and outflows. Most current information on magnetic fields close to high-mass protostars comes from polarized maser emissions, which allows us to investigate the magnetic field on small scales by using very long-baseline interferometry. The massive star-forming region W75N contains three radio continuum sources (VLA1, VLA2, and VLA3), at three different evolutionary stages, and associated masers, while a large-scale molecular bipolar outflow is also present. Very recently, polarization observations of the 6.7 GHz methanol masers at milliarsecond resolution have been able to probe the strength and structure of the magnetic field over more than 2000 AU around VLA1. The magnetic field is parallel to the outflow, suggesting that VLA1 is its powering source. The observations of water masers at 22 GHz can give more information about the gas dynamics and the magnetic fields around VLA1 and VLA2. The NRAO Very Long Baseline Array was used to measure the linear polarization and the Zeeman-splitting of the 22 GHz water masers in the star-forming region W75N. We detected 124 water masers, 36 around VLA1 and 88 around VLA2 of W75N, which indicate two different physical environments around the two sources, where VLA1 is in a more evolved state. The linear polarization of the masers confirms the tightly ordered magnetic field around VLA1, which is aligned with the large-scale molecular outflow, and also reveals an ordered magnetic field around VLA2, which is not parallel to the outflow. [abridged]



rate research

Read More

The massive star-forming region W75N~(B) is thought to host a cluster of massive protostars (VLA~1, VLA~2, and VLA~3) undergoing different evolutionary stages. In this work, we present radio continuum data with the highest sensitivity and angular resolution obtained to date in this region, using the VLA-A and covering a wide range of frequencies (4-48~GHz), which allowed us to study the morphology and the nature of the emission of the different radio continuum sources. We also performed complementary studies with multi-epoch VLA data and ALMA archive data at 1.3 mm wavelength. We find that VLA~1 is driving a thermal radio jet at scales of $approx$0.1 arcsec ($approx$130 au), but also shows signs of an incipient hyper-compact HII region at scales of $lesssim$ 1 arcsec ($lesssim$ 1300~au). VLA~3 is also driving a thermal radio jet at scales of a few tenths of arcsec (few hundred of au). We conclude that this jet is shock-exciting the radio continuum sources Bc and VLA~4 (obscured HH objects), which show proper motions moving outward from VLA~3 at velocities of $approx$112--118~km/s. We have also detected three new weak radio continuum sources, two of them associated with millimeter continuum cores observed with ALMA, suggesting that these two sources are also embedded YSOs in this massive star-forming region.
Protoplanetary disks form through angular momentum conservation in collapsing dense cores. In this work, we perform the first simulations with a maximal resolution down to the astronomical unit (au) of protoplanetary disk formation, through the collapse of 1000 solar mass clumps, treating self-consistently both non-ideal magnetohydrodynamics with ambipolar diffusion as well as radiative transfer in the flux-limited diffusion approximation including stellar feedback. Using the adaptive mesh-refinement code RAMSES, we investigate the influence of the magnetic field on the disks properties with three models. We show that, without magnetic fields, a population dominated by large disks is formed, which is not consistent with Class 0 disk properties as estimated from observations. The inclusion of magnetic field leads, through magnetic braking, to a very different evolution. When it is included, small < 50 au disks represent about half the population. In addition, about ~ 70% of the stars have no disk in this case which suggests that our resolution is still insufficient to preserve the smaller disks. With ambipolar diffusion, the proportion of small disks is also prominent and we report a flat mass distribution around 0.01-0.1 solar mass and a typical disk-to-star mass ratios of ~0.01-0.1. This work shows that the magnetic field and its evolution plays a prominent role in setting the initial properties of disk populations.
The formation of stars in massive clusters is one of the main modes of the star formation process. However, the study of massive star forming regions is hampered by their typically large distances to the Sun. One exception to this is the massive star forming region Cygnus OB2 in the Cygnus X region, at the distance of about 1400 pc. Cygnus OB2 hosts very rich populations of massive and low-mass stars, being the best target in our Galaxy to study the formation of stars, circumstellar disks, and planets in presence of massive stars. In this paper we combine a wide and deep set of photometric data, from the r band to 24 micron, in order to select the disk bearing population of stars in Cygnus OB2 and identify the class I, class II, and stars with transition and pre-transition disks. We selected 1843 sources with infrared excesses in an area of 1 degree x 1 degree centered on Cyg OB2 in several evolutionary stages: 8.4% class I, 13.1% flat-spectrum sources, 72.9% class II, 2.3% pre-transition disks, and 3.3% transition disks. The spatial distribution of these sources shows a central cluster surrounded by a annular overdensity and some clumps of recent star formation in the outer region. Several candidate subclusters are identified, both along the overdensity and in the rest of the association.
We observed three high-mass star-forming regions in the W3 high-mass star formation complex with the Submillimeter Array and IRAM 30 m telescope. These regions, i.e. W3 SMS1 (W3 IRS5), SMS2 (W3 IRS4) and SMS3, are in different evolutionary stages and are located within the same large-scale environment, which allows us to study rotation and outflows as well as chemical properties in an evolutionary sense. While we find multiple mm continuum sources toward all regions, these three sub-regions exhibit different dynamical and chemical properties, which indicates that they are in different evolutionary stages. Even within each subregion, massive cores of different ages are found, e.g. in SMS2, sub-sources from the most evolved UCHII region to potential starless cores exist within 30 000 AU of each other. Outflows and rotational structures are found in SMS1 and SMS2. Evidence for interactions between the molecular cloud and the HII regions is found in the 13CO channel maps, which may indicate triggered star formation.
184 - I. Jimenez-Serra 2012
We present high angular resolution observations (0.5x0.3) carried out with the Submillimeter Array (SMA) toward the AFGL2591 high-mass star forming region. Our SMA images reveal a clear chemical segregation within the AFGL2591 VLA 3 hot core, where different molecular species (Type I, II and III) appear distributed in three concentric shells. This is the first time that such a chemical segregation is ever reported at linear scales <3000 AU within a hot core. While Type I species (H2S and 13CS) peak at the AFGL2591 VLA 3 protostar, Type II molecules (HC3N, OCS, SO and SO2) show a double-peaked structure circumventing the continuum peak. Type III species, represented by CH3OH, form a ring-like structure surrounding the continuum emission. The excitation temperatures of SO2, HC3N and CH3OH (185+-11 K, 150+-20 K and 124+-12 K, respectively) show a temperature gradient within the AFGL2591 VLA 3 envelope, consistent with previous observations and modeling of the source. By combining the H2S, SO2 and CH3OH images, representative of the three concentric shells, we find that the global kinematics of the molecular gas follow Keplerian-like rotation around a 40 Mo-star. The chemical segregation observed toward AFGL2591 VLA 3 is explained by the combination of molecular UV photo-dissociation and a high-temperature (~1000 K) gas-phase chemistry within the low extinction innermost region in the AFGL2591 VLA 3 hot core.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا