Do you want to publish a course? Click here

Astrophysical $S$ factor for the ${}^{15}{rm N}(p,gamma){}^{16}{rm O}$ reaction from $R$-matrix analysis and asymptotic normalization coefficient for ${}^{16}{rm O} to {}^{15}{rm N} + p$. Is any fit acceptable?

135   0   0.0 ( 0 )
 Added by Marco La Cognata
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The $^{15}{rm N}(p,gamma)^{16}{rm O}$ reaction provides a path from the CN cycle to the CNO bi-cycle and CNO tri-cycle. The measured astrophysical factor for this reaction is dominated by resonant capture through two strong $J^{pi}=1^{-}$ resonances at $E_{R}= 312$ and 962 keV and direct capture to the ground state. Recently, a new measurement of the astrophysical factor for the $^{15}{rm N}(p,gamma)^{16}{rm O}$ reaction has been published [P. J. LeBlanc {it et al.}, Phys. Rev. {bf C 82}, 055804 (2010)]. The analysis has been done using the $R$-matrix approach with unconstrained variation of all parameters including the asymptotic normalization coefficient (ANC). The best fit has been obtained for the square of the ANC $C^{2}= 539.2$ fm${}^{-1}$, which exceeds the previously measured value by a factor of $approx 3$. Here we present a new $R$-matrix analysis of the Notre Dame-LUNA data with the fixed within the experimental uncertainties square of the ANC $C^{2}=200.34$ fm${}^{-1}$. Rather than varying the ANC we add the contribution from a background resonance that effectively takes into account contributions from higher levels. Altogether we present 8 fits, five unconstrained and three constrained. In all the fits the ANC is fixed at the previously determined experimental value $C^{2}=200.34$ fm${}^{-1}$. For the unconstrained fit with the boundary condition $B_{c}=S_{c}(E_{2})$, where $E_{2}$ is the energy of the second level, we get $S(0)=39.0 pm 1.1 $ keVb and normalized ${tilde chi}^{2}=1.84$, i.e. the result which is similar to [P. J. LeBlanc {it et al.}, Phys. Rev. {bf C 82}, 055804 (2010)]. From all our fits we get the range $33.1 leq S(0) leq 40.1$ keVb which overlaps with the result of [P. J. LeBlanc {it et al.}, Phys. Rev. {bf C 82}, 055804 (2010)]. We address also physical interpretation of the fitting parameters.



rate research

Read More

169 - T. Wakasa , M. Okamoto , M. Takaki 2011
We report measurements of the cross section and a complete set of polarization transfer observables for the ${}^{16}{rm O}(vec{p},vec{n}){}^{16}{rm F}$ reaction at a bombarding energy of $T_p$ = 296 MeV and a reaction angle of $theta_{rm lab}$ = $0^{circ}$. The data are compared with distorted-wave impulse approximation calculations employing the large configuration-space shell-model (SM) wave functions. The well-known Gamow-Teller and spin-dipole (SD) states at excitation energies of $E_x$ $lesssim$ 8 MeV have been reasonably reproduced by the calculations except for the spin--parity $J^{pi}$ = $2^-$ state at $E_x$ = 5.86 MeV. The SD resonance at $E_x$ $simeq$ 9.5 MeV appears to have more $J^{pi}$ = $2^-$ strength than $J^{pi}$ = $1^-$ strength, consistent with the calculations. The data show significant strength in the spin-longitudinal polarized cross section $ID_L(0^{circ})$ at $E_x$ $simeq$ 15 MeV, which indicates existence of the $J^{pi}$ = $0^-$ SD resonance as predicted in the SM calculations.
The secondary $gamma$ rays emitted following a nuclear reaction are often relatively straightforward to detect experimentally. Despite the large volume of such data, a practical formalism for describing these $gamma$ rays in terms of partial-wave $T$-matrix elements has never been given. The partial-wave formalism is applicable when $R$-matrix methods are used to describe the reaction in question. This paper supplies the needed framework, and it is demonstrated by the application to the ${}^{15}{rm N}(p,alpha_1gamma){}^{12}{rm C}$ reaction.
283 - M. Dozono , T. Uesaka , N. Fukuda 2020
The parity-transfer $({}^{16}{rm O},{}^{16}{rm F}(0^-,{rm g.s.}))$ reaction is presented as a new probe for investigating isovector $0^-$ states in nuclei. The properties of $0^-$ states provide a stringent test of the threshold density for pion condensation in nuclear matter. Utilizing a $0^+ rightarrow 0^-$ transition in the projectile, the parity-transfer reaction transfers an internal parity to a target nucleus, resulting in a unique sensitivity to unnatural-parity states. Consequently, the selectivity for $0^-$ states is higher than in other reactions employed to date. The probe was applied to a study of the $0^-$ states in ${}^{12}{rm B}$ via the ${}^{12}{rm C}({}^{16}{rm O},{}^{16}{rm F}(0^-,{rm g.s.}))$ reaction at $247~{rm MeV/u}$. The excitation energy spectra were deduced by detecting the ${}^{15}{rm O}+p$ pair produced in the decay of the ${}^{16}{rm F}$ ejectile. A known $0^-$ state at $E_x = 9.3~{rm MeV}$ was observed with an unprecedentedly high signal-to-noise ratio. The data also revealed new candidates of $0^-$ states at $E_x=6.6 pm 0.4$ and $14.8 pm 0.3~{rm MeV}$. The results demonstrate the high efficiency of $0^-$ state detection by the parity-transfer reaction.
345 - E. Geis , V. Ziskin , T. Akdogan 2008
We report new measurements of the neutron charge form factor at low momentum transfer using quasielastic electrodisintegration of the deuteron. Longitudinally polarized electrons at an energy of 850 MeV were scattered from an isotopically pure, highly polarized deuterium gas target. The scattered electrons and coincident neutrons were measured by the Bates Large Acceptance Spectrometer Toroid (BLAST) detector. The neutron form factor ratio $G^{n}_{E}/G^{n}_{M}$ was extracted from the beam-target vector asymmetry $A_{ed}^{V}$ at four-momentum transfers $Q^{2}=0.14$, 0.20, 0.29 and 0.42 (GeV/c)$^{2}$.
The astrophysical $^7{rm Be}(p, gamma)^8{rm B}$ direct capture process is studied in the framework of a two-body single-channel model with potentials of the Gaussian form. A modified potential is constructed to reproduce the new experimental value of the $S$-wave scattering length and the known astrophysical $S$ factor at the Gamow energy, extracted from the solar neutrino flux. The resulting potential is consistent with the theory developed by Baye [Phys. Rev. C {bf 62} (2000) 065803] according to which the $S$-wave scattering length and the astrophysical $S$ factor at zero energy divided by the square of ANC are related. The obtained results for the astrophysical $S$ factor at intermediate energies are in good agreement with the two data sets of Hammache {it et al.} [Phys. Rev. Lett. {bf 86}, 3985 (2001); {it ibid.} {bf 80}, 928 (1998)]. Linear extrapolation to zero energy yields $ S_{17}(0) approx (20.5 pm 0.5) , rm eV , b $, consistent with the Solar Fusion II estimate. The calculated reaction rates are substantially lower than the results of the NACRE II collaboration.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا