Do you want to publish a course? Click here

Correlations in the (Sub)millimeter background from ACTxBLAST

531   0   0.0 ( 0 )
 Added by Amir Hajian
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present measurements of the auto- and cross-frequency correlation power spectra of the cosmic (sub)millimeter background at: 250, 350, and 500 um (1200, 860, and 600 GHz) from observations made with the Balloon-borne Large Aperture Submillimeter Telescope, BLAST; and at 1380 and 2030 um (218 and 148 GHz) from observations made with the Atacama Cosmology Telescope, ACT. The overlapping observations cover 8.6 deg^2 in an area relatively free of Galactic dust near the south ecliptic pole (SEP). The ACT bands are sensitive to radiation from the CMB, the Sunyaev-Zeldovich (SZ) effect from galaxy clusters, and to emission by radio and dusty star-forming galaxies (DSFGs), while the dominant contribution to the BLAST bands is from DSFGs. We confirm and extend the BLAST analysis of clustering with an independent pipeline, and also detect correlations between the ACT and BLAST maps at over 25sigma significance, which we interpret as a detection of the DSFGs in the ACT maps. In addition to a Poisson component in the cross-frequency power spectra, we detect a clustered signal at >4sigma, and using a model for the DSFG evolution and number counts, we successfully fit all our spectra with a linear clustering model and a bias that depends only on redshift and not on scale. Finally, the data are compared to, and generally agree with, phenomenological models for the DSFG population. This study represents a first of its kind, and demonstrates the constraining power of the cross-frequency correlation technique to constrain models for the DSFGs. Similar analyses with more data will impose tight constraints on future models.



rate research

Read More

Modern (sub-)millimeter interferometers enable the measurement of the cool gas and dust emission of high-redshift galaxies (z>5). However, at these redshifts the cosmic microwave background (CMB) temperature is higher, approaching, and even exceeding, the temperature of cold dust and molecular gas observed in the local Universe. In this paper, we discuss the impact of the warmer CMB on (sub-)millimeter observations of high-redshift galaxies. The CMB affects the observed (sub-)millimeter dust continuum and the line emission (e.g. carbon monoxide, CO) in two ways: (i) it provides an additional source of (both dust and gas) heating; and (ii) it is a non-negligible background against which the line and continuum emission are measured. We show that these two competing processes affect the way we interpret the dust and gas properties of high-redshift galaxies using spectral energy distribution models. We quantify these effects and provide correction factors to compute what fraction of the intrinsic dust (and line) emission can be detected against the CMB as a function of frequency, redshift and temperature. We discuss implications on the derived properties of high-redshift galaxies from (sub-)millimeter data. Specifically, the inferred dust and molecular gas masses can be severely underestimated for cold systems if the impact of the CMB is not properly taken into account.
We examine the two-point correlation function of local maxima in temperature fluctuations at the last scattering surface when this stochastic field is modified by the additional fluctuations produced by straight cosmic strings via the Kaiser-Stebbins effect. We demonstrate that one can detect the imprint of cosmic strings with tension $Gmu gtrsim 1.2 times 10^{-8}$ on noiseless $1^prime$ resolution cosmic microwave background (CMB) maps at 95% confidence interval. Including the effects of foregrounds and anticipated systematic errors increases the lower bound to $Gmu gtrsim 9.0times 10^{-8}$ at $2sigma$ confidence level. Smearing by beams of order 4 degrades the bound further to $Gmu gtrsim 1.6 times 10^{-7}$. Our results indicate that two-point statistics are more powerful than 1-point statistics (e.g. number counts) for identifying the non-Gaussianity in the CMB due to straight cosmic strings.
138 - R. Decarli , I. Smail , F. Walter 2013
We study the sub-mm properties of color-selected galaxies via a stacking analysis applied for the first time to interferometric data at sub-mm wavelengths. We base our study on 344 GHz ALMA continuum observations of ~20-wide fields centered on 86 sub-mm sources detected in the LABOCA Extended Chandra Deep Field South Sub-mm Survey (LESS). We select various classes of galaxies (K-selected, star-forming sBzK galaxies, extremely red objects and distant red galaxies) according to their optical/NIR fluxes. We find clear, >10-sigma detections in the stacked images of all these galaxy classes. We include in our stacking analysis Herschel/SPIRE data to constrain the dust SED of these galaxies. We find that their dust emission is well described by a modified black body with Tdust~30 K and beta=1.6 and IR luminosities of (5-11)x10^{11} Lsun, or implied star formation rates of 75-140 Msun/yr. We compare our results with those of previous studies based on single-dish observations at 870 micron and find that our flux densities are a factor 2-3 higher than previous estimates. The discrepancy is observed also after removing sources individually detected in ALESS maps. We report a similar discrepancy by repeating our analysis on 1.4,GHz observations of the whole ECDFS. Hence we find tentative evidence that galaxies that are associated in projected and redshift space with sub-mm bright sources are brighter than the average population. Finally, we put our findings in the context of the cosmic star formation rate density as a function of redshift.
We use data from the first 100 square-degree field observed by the South Pole Telescope (SPT) in 2008 to measure the angular power spectrum of temperature anisotropies contributed by the background of dusty star-forming galaxies (DSFGs) at millimeter wavelengths. From the auto and cross-correlation of 150 and 220 GHz SPT maps, we significantly detect both Poisson distributed and, for the first time at millimeter wavelengths, clustered components of power from a background of DSFGs. The spectral indices between 150 and 220 GHz of the Poisson and clustered components are found to be 3.86 +- 0.23 and 3.8 +- 1.3 respectively, implying a steep scaling of the dust emissivity index beta ~ 2. The Poisson and clustered power detected in SPT, BLAST (at 600, 860, and 1200 GHz), and Spitzer (1900 GHz) data can be understood in the context of a simple model in which all galaxies have the same graybody spectrum with dust emissivity index of beta = 2 and dust temperature T_d = 34 K. In this model, half of the 150 GHz background light comes from redshifts greater than 3.2. We also use the SPT data to place an upper limit on the amplitude of the kinetic Sunyaev-Zeldovich power spectrum at l = 3000 of 13 uK^2 at 95% confidence.
[abridged] Modern (sub-)millimeter/radio interferometers will enable us to measure the dust and molecular gas emission from galaxies that have luminosities lower than the Milky Way, out to high redshifts and with unprecedented spatial resolution and sensitivity. This will provide new constraints on the star formation properties and gas reservoir in galaxies throughout cosmic times through dedicated deep field campaigns targeting the CO/[CII] lines and dust continuum emission. In this paper, we present empirical predictions for such (sub-)millimeter line and continuum deep fields. We base these predictions on the deepest available optical/near-infrared ACS and NICMOS data on the Hubble Ultra Deep Field. Using a physically-motivated spectral energy distribution model, we fit the observed optical/near-infrared emission of 13,099 galaxies with redshifts up to z=5, and obtain median likelihood estimates of their stellar mass, star formation rate, dust attenuation and dust luminosity. We derive statistical constraints on the dust emission in the infrared and (sub-)millimeter which are consistent with the observed optical/near-infrared emission in terms of energy balance. This allows us to estimate, for each galaxy, the (sub-)millimeter continuum flux densities in several ALMA, PdBI/NOEMA and JVLA bands. Using empirical relations between the observed CO/[CII] line luminosities and the infrared luminosity, we infer the flux of the CO(1-0) and [CII] lines from the estimated infrared luminosity of each galaxy in our sample. We then predict the fluxes of higher CO transition lines CO(2-1) to CO(7-6) bracketing two extreme gas excitation scenarios. We use our predictions to discuss possible deep field strategies with ALMA. The predictions presented in this study will serve as a direct benchmark for future deep field campaigns in the (sub-)millimeter regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا