No Arabic abstract
Nuclear regions of galaxies generally host a mixture of components with different exitation, composition, and kinematics. Derivation of emission line ratios and kinematics could then be misleading, if due correction is not made for the limited spatial and spectral resolutions of the observations. The aim of this paper is to demonstrate, with application to a long slit spectrum of the Seyfert2 galaxy NGC1358, how line intensities and velocities, together with modelling and knowledge of the point spread function, may be used to resolve the differing structures. In the situation outlined, the observed kinematics differs for different spectral lines. From the observed intensity and velocity distributions of a number of spectral lines and with some reasonable assumptions to diminish the number of free parameters, the true line ratios and velocity structures may be deduced. A preliminary solution for the nuclear structure of NGC1358 is obtained, involving a nuclear point source and an emerging outflow of high excitation with a post shock cloud, as well as a nuclear emission line disk rotating in the potential of a stellar bulge and expressing a radial exitation gradient. The method results in a likely scenario for the nuclear structure of NGC1358. For definitive results an extrapolation of the method to two dimensions combined with the use of integral field spectroscopy will generally be necessary.
Nuclear regions of galaxies generally host a mixture of components with different exitation, composition, and kinematics. Derivation of emission line ratios and kinematics could then be misleading, if due correction is not made for the limited spatial and spectral resolutions of the observations.The aim of this paper is to demonstrate, with application to a long slit spectrum of the Seyfert 2 galaxy NGC 1358, how line intensities and velocities, together with modelling and knowledge of the point spread function, may be used to resolve the differing structures. In the situation outlined above, the observed kinematics differs for different spectral lines. From the observed intensity and velocity distributions of a number of spectral lines and with some reasonable assumptions to diminish the number of free parameters, the true line ratios and velocity structures may be deduced. A preliminary solution for the nuclear structure of NGC 1358 is obtained, involving a nuclear point source and an emerging outflow of high exitation, as well as a nuclear emission line disk rotating in the potential of a stellar bulge and expressing a radial excitation gradient. The method results in a likely scenario for the nuclear structure of the Seyfert 2 galaxy NGC 1358. For definitive results an extrapolation of the method to two dimensions combined with the use of integral field spectroscopy will generally be necessary.
We use Chandra observations to estimate the accretion rate of hot gas onto the central supermassive black hole in four giant (of stellar mass 10E11 - 10E12 solar masses) early-type galaxies located in the Virgo cluster. They are characterized by an extremely low radio luminosity, in the range L < 3E25 - 10E27 erg/s/Hz. We find that, accordingly, accretion in these objects occurs at an extremely low rate, 0.2 - 3.7 10E-3 solar masses per year, and that they smoothly extend the relation accretion - jet power found for more powerful radio-galaxies. This confirms the dominant role of hot gas and of the galactic coronae in powering radio-loud active galactic nuclei across ~ 4 orders of magnitude in luminosity. A suggestive trend between jet power and location within the cluster also emerges.
We present an analysis of anomaly detection for machine learning redshift estimation. Anomaly detection allows the removal of poor training examples, which can adversely influence redshift estimates. Anomalous training examples may be photometric galaxies with incorrect spectroscopic redshifts, or galaxies with one or more poorly measured photometric quantity. We select 2.5 million clean SDSS DR12 galaxies with reliable spectroscopic redshifts, and 6730 anomalous galaxies with spectroscopic redshift measurements which are flagged as unreliable. We contaminate the clean base galaxy sample with galaxies with unreliable redshifts and attempt to recover the contaminating galaxies using the Elliptical Envelope technique. We then train four machine learning architectures for redshift analysis on both the contaminated sample and on the preprocessed anomaly-removed sample and measure redshift statistics on a clean validation sample generated without any preprocessing. We find an improvement on all measured statistics of up to 80% when training on the anomaly removed sample as compared with training on the contaminated sample for each of the machine learning routines explored. We further describe a method to estimate the contamination fraction of a base data sample.
CoGeNT has taken data for over 3 years, with 1136 live days of data accumulated as of April 23, 2013. We report on the results of a maximum likelihood analysis to extract any possible dark matter signal present in the collected data. The maximum likelihood signal extraction uses 2-dimensional probability density functions (PDFs) to characterize the anticipated variations in dark matter interaction rates for given observable nuclear recoil energies during differing periods of the Earths annual orbit around the Sun. Cosmogenic and primordial radioactivity backgrounds are characterized by their energy signatures and in some cases decay half-lives. A third parameterizing variable -- pulse rise-time -- is added to the likelihood analysis to characterize slow rising pulses described in prior analyses. The contribution to each event category is analyzed for various dark matter signal hypotheses including a dark matter standard halo model and a case with free oscillation parameters (i.e., amplitude, period, and phase). The best-fit dark matter signal is in close proximity to previously reported results. We find that the significance of the extracted dark matter signal remains well below evidentiary at 1.7 $sigma$.
We identify and characterize compact dwarf starburst (CDS) galaxies in the RESOLVE survey, a volume-limited census of galaxies in the local universe, to probe whether this population contains any residual ``blue nuggets, a class of intensely star-forming compact galaxies first identified at high redshift $z$. Our 50 low-$z$ CDS galaxies are defined by dwarf masses (stellar mass $M_* < 10^{9.5}$ M$_{odot}$), compact bulged-disk or spheroid-dominated morphologies (using a quantitative criterion, $mu_Delta > 8.6$), and specific star formation rates above the defining threshold for high-$z$ blue nuggets ($log$ SSFR [Gyr$^{-1}] > -0.5$). Across redshifts, blue nuggets exhibit three defining properties: compactness relative to contemporaneous galaxies, abundant cold gas, and formation via compaction in mergers or colliding streams. Those with halo mass below $M_{rm halo} sim 10^{11.5}$ M$_{odot}$ may in theory evade permanent quenching and cyclically refuel until the present day. Selected only for compactness and starburst activity, our CDS galaxies generally have $M_{rm halo} lesssim 10^{11.5}$ M$_{odot}$ and gas-to-stellar mass ratio $gtrsim$1. Moreover, analysis of archival DECaLS photometry and new 3D spectroscopic observations for CDS galaxies reveals a high rate of photometric and kinematic disturbances suggestive of dwarf mergers. The SSFRs, surface mass densities, and number counts of CDS galaxies are compatible with theoretical and observational expectations for redshift evolution in blue nuggets. We argue that CDS galaxies represent a maximally-starbursting subset of traditional compact dwarf classes such as blue compact dwarfs and blue E/S0s. We conclude that CDS galaxies represent a low-$z$ tail of the blue nugget phenomenon formed via a moderated compaction channel that leaves open the possibility of disk regrowth and evolution into normal disk galaxies.