No Arabic abstract
We examine various implications from a dynamical and chemical model of globular clusters (GCs), which successfully reproduces the observed abundance patterns and the multiple populations of stars in these systems assuming chemical enrichment from fast rotating massive stars. Using the model of Decressin et al. (2007) we determine the ratio between the observed, present-day mass of globular clusters and their initial stellar mass as a function of the stellar initial mass function (IMF). We also compute the mass of low-mass stars ejected, and the amount of hydrogen ionising photons emitted by the proto globular clusters. Typically, we find that the initial masses of GCs must be ~8-10 times (or up to 25 times, if second generation stars also escape from GCs) larger than the present-day stellar mass. The present-day Galactic GC population must then have contributed to approximately 5-8% (10-20%) of the low-mass stars in the Galactic halo. We also show that the detection of second generation stars in the Galactic halo, recently announced by different groups, provides a new constraint on the GC initial mass function (GCIMF). These observations appear to rule out a power-law GCIMF, whereas they are compatible with a log-normal one. Finally, the high initial masses also imply that GCs must have emitted a large amount of ionising photons in the early Universe. Our results reopen the question on the initial mass function of GCs, and reinforce earlier conclusions that old GCs could have represented a significant contribution to reionise the inter-galactic medium at high redshift.
[Abridged] We present a physical model for the evolution of the ultraviolet (UV) luminosity function (LF) of high-z galaxies taking into account in a self-consistent way their chemical evolution and the associated evolution of dust extinction. The model yields good fits of the UV and Lyman-alpha LFs at z>~2. The weak evolution of both LFs between z=2 and z=6 is explained as the combined effect of the negative evolution of the halo mass function, of the increase with redshift of the star formation efficiency, and of dust extinction. The slope of the faint end of the UV LF is found to steepen with increasing redshift, implying that low luminosity galaxies increasingly dominate the contribution to the UV background at higher and higher redshifts. The observed range of UV luminosities at high-z implies a minimum halo mass capable of hosting active star formation M_crit <~ 10^9.8 M_odot, consistent with the constraints from hydrodynamical simulations. From fits of Lyman-alpha LFs plus data on the luminosity dependence of extinction and from the measured ratios of non-ionizing UV to Lyman-continuum flux density for samples of z=~3 Lyman break galaxies and Lyman-alpha emitters, we derive a simple relationship between the escape fraction of ionizing photons and the star formation rate, impling larger escape fraction for less massive galaxies. Galaxies already represented in the UV LF (M_UV <~ -18) can keep the universe fully ionized up to z=~6, consistent with (uncertain) data pointing to a rapid drop of the ionization degree above z~6. On the other side, the electron scattering optical depth, tau_es, inferred from CMB experiments favor an ionization degree close to unity up to z=~9-10. Consistency with CMB data can be achieved if M_crit =~ 10^8.5 M_odot, implying that the UV LFs extend to M_UV =~ -13, although the corresponding tau_es is still on the low side of CMB-based estimates.
We study the escape fraction of ionizing photons (f_esc) in two cosmological zoom-in simulations of galaxies in the reionization era with halo mass M_halo~10^10 and 10^11 M_sun (stellar mass M*~10^7 and 10^9 M_sun) at z=5 from the Feedback in Realistic Environments project. These simulations explicitly resolve the formation of proto-globular clusters (GCs) self-consistently, where 17-39% of stars form in bound clusters during starbursts. Using post-processing Monte Carlo radiative transfer calculations of ionizing radiation, we compute f_esc from cluster stars and non-cluster stars formed during a starburst over ~100 Myr in each galaxy. We find that the averaged f_esc over the lifetime of a star particle follows a similar distribution for cluster stars and non-cluster stars. Clusters tend to have low f_esc in the first few Myrs, presumably because they form preferentially in more extreme environments with high optical depths; the f_esc increases later as feedback starts to disrupt the natal cloud. On the other hand, non-cluster stars formed between cluster complexes or in the compressed shell at the front of a superbubble can also have high f_esc. We find that cluster stars on average have comparable f_esc to non-cluster stars. This result is robust across several star formation models in our simulations. Our results suggest that the fraction of ionizing photons from proto-GCs to cosmic reionization is comparable to the cluster formation efficiency in high-redshift galaxies and hence proto-GCs likely contribute an appreciable fraction of photons but are not the dominant sources for reionization.
We investigate the origin of the relations between stellar mass and optical circular velocity for early-type (ETG) and late-type (LTG) galaxies --- the Faber-Jackson (FJ) and Tully-Fisher (TF) relations. We combine measurements of dark halo masses (from satellite kinematics and weak lensing), and the distribution of baryons in galaxies (from a new compilation of galaxy scaling relations), with constraints on dark halo structure from cosmological simulations. The principle unknowns are the halo response to galaxy formation and the stellar initial mass function (IMF). The slopes of the TF and FJ relations are naturally reproduced for a wide range of halo response and IMFs. However, models with a universal IMF and universal halo response cannot simultaneously reproduce the zero points of both the TF and FJ relations. For a model with a universal Chabrier IMF, LTGs require halo expansion, while ETGs require halo contraction. A Salpeter IMF is permitted for high mass (sigma > 180 km/s) ETGs, but is inconsistent for intermediate masses, unless V_circ(R_e)/sigma_e > 1.6. If the IMF is universal and close to Chabrier, we speculate that the presence of a major merger may be responsible for the contraction in ETGs while clumpy accreting streams and/or feedback leads to expansion in LTGs. Alternatively, a recently proposed variation in the IMF disfavors halo contraction in both types of galaxies. Finally we show that our models naturally reproduce flat and featureless circular velocity profiles within the optical regions of galaxies without fine-tuning.
Recent results have suggested that active galactic nuclei (AGN) could provide enough photons to reionise the Universe. We assess the viability of this scenario using a semi-numerical framework for modeling reionisation, to which we add a quasar contribution by constructing a Quasar Halo Occupation Distribution (QHOD) based on Giallongo et al. observations. Assuming a constant QHOD, we find that an AGN-only model cannot simultaneously match observations of the optical depth $tau_e$, neutral fraction, and ionising emissivity. Such a model predicts $tau_e$ too low by $sim 2sigma$ relative to Planck constraints, and reionises the Universe at $zlesssim 5$. Arbitrarily increasing the AGN emissivity to match these results yields a strong mismatch with the observed ionising emissivity at $zsim 5$. If we instead assume a redshift-independent AGN luminosity function yielding an emissivity evolution like that assumed in Madau & Haardt model, then we can match $tau_e$ albeit with late reionisation, however such evolution is inconsistent with observations at $zsim 4-6$ and poorly motivated physically. These results arise because AGN are more biased towards massive halos than typical reionising galaxies, resulting in stronger clustering and later formation times. AGN-dominated models produce larger ionising bubbles that are reflected in $simtimes 2$ more 21cm power on all scales. A model with equal parts galaxies and AGN contribution is still (barely) consistent with observations, but could be distinguished using next-generation 21cm experiments HERA and SKA-low. We conclude that, even with recent claims of more faint AGN than previously thought, AGN are highly unlikely to dominate the ionising photon budget for reionisation.
We highlight the impact of cluster-mass-dependent evolutionary rates upon the evolution of the cluster mass function during violent relaxation, that is, while clusters dynamically respond to the expulsion of their residual star-forming gas. Mass-dependent evolutionary rates arise when the mean volume density of cluster-forming regions is mass-dependent. In that case, even if the initial conditions are such that the cluster mass function at the end of violent relaxation has the same shape as the embedded-cluster mass function (i.e. infant weight-loss is mass-independent), the shape of the cluster mass function does change transiently {it during} violent relaxation. In contrast, for cluster-forming regions of constant mean volume density, the cluster mass function shape is preserved all through violent relaxation since all clusters then evolve at the same mass-independent rate. On the scale of individual clusters, we model the evolution of the ratio between the dynamical mass and luminous mass of a cluster after gas expulsion. Specifically, we map the radial dependence of the time-scale for a star cluster to return to equilibrium. We stress that fields-of-view a few pc in size only, typical of compact clusters with rapid evolutionary rates, are likely to reveal cluster regions which have returned to equilibrium even if the cluster experienced a major gas expulsion episode a few Myr earlier. We provide models with the aperture and time expressed in units of the initial half-mass radius and initial crossing-time, respectively, so that our results can be applied to clusters with initial densities, sizes, and apertures different from ours.