No Arabic abstract
We have carried out optical (R band) intraday variability (IDV) monitoring of a sample of ten bright low energy peaked blazars (LBLs). Forty photometric observations, of an average of ~ 4 hours each, were made between 2008 September and 2009 June using two telescopes in India. Measurements with good signal to noise ratios were typically obtained within 1-3 minutes, allowing the detection of weak, fast variations using N-star differential photometry. We employed both structure function and discrete correlation function analysis methods to estimate any dominant timescales of variability and found that in most of the cases any such timescales were longer than the duration of the observation. The calculated duty cycle of IDV in LBLs during our observing run is ~ 52%, which is low compared to many earlier studies; however, the relatively short periods for which each source was observed can probably explain this difference. We briefly discuss possible emission mechanisms for the observed variability.
We have measured multi-band optical flux and colour variations for a sample of 12 low energy peaked blazars on short, day-to-month, timescales. Our sample contains six BL Lacertae objects and six flat spectrum radio quasars. These photometric observations, made during September 2008 to June 2009, used five optical telescopes, one in India and four in Bulgaria. We detected short term flux variations in eleven of these blazars and colour variability in eight of them. Our data indicate that six blazars (3C 66A, AO 0235+164, S5 0716+714, PKS 0735+178, OJ 287 and 3C 454.3) were observed in pre- or post-outburst states, that five (PKS 0420-014, 4C 29.45, 3C 279, PKS 1510-089 and BL Lac) were in a low state, while one (3C 273) was in an essentially steady state. The duty cycles for flux and colour variations on short timescales in these low energy peaked blazars are ~ 92 percent and ~ 33 percent, respectively. The colour vs magnitude correlations seen here support the hypothesis that BL Lac objects tend to become bluer with increase in brightness; however, flat spectrum radio quasars may show the opposite trend, and there are exceptions to these trends in both categories of blazar. We briefly discuss emission models for active galactic nuclei that might explain our results.
We selected a sample of 24 XMM-Newton light curves (LCs) of four high energy peaked blazars, PKS 0548-322, ON 231, 1ES 1426+428 and PKS 2155-304. These data comprise continuous light curves of 7.67h to 18.97h in length. We searched for possible quasi-periodic oscillations (QPO) and intra-day variability (IDV) timescales in the LCs of these blazars. We found a likely QPO in one LC of PKS 2155-304 which was reported elsewhere (Lachowicz et al. 2009). In the remaining 23 LCs we found hints of possible weak QPOs in one LC of each of ON 231 and PKS 2155-304, but neither is statistically significant. We found IDV timescales that ranged from 15.7 ks to 46.8 ks in 8 LCs. In 13 LCs any variability timescales were longer than the length of the data. Assuming the possible weak QPO periods in the blazars PKS 2155-304 and ON 231 are real and are associated with the innermost portions of their accretion disk, we can estimate that their central black hole masses exceed 1.2 $times$ 10$^{7}$ M$_{odot}$. Emission models for radio-loud active galactic nuclei (AGN) that could explain our results are briefly discussed.
In this first systematic attempt to characterise the intranight optical variability (INOV) of TeV detected blazars, we have monitored a well defined set of 9 TeV blazars on total 26 nights during 2004-2010. In this R (or V)-band monitoring programme only one blazar was monitored per night for a minimum duration of 4 hours. Using the CCD, an INOV detection threshold of ~ 1-2 % was achieved in the densely sampled DLCs. We have further expanded the sample by including another 13 TeV blazars from literature. This enlarged sample of 22 TeV blazars, monitored on a total of 116 nights (including 55 nights newly reported here), has enabled us to arrive at the first estimate of the INOV duty cycle of TeV detected blazars. Applying the C-test, the INOV DC is found to be 59 %, which decreases to 47 % if only INOV fractional amplitudes above 3 % are considered. These observations also permit, for the first time, a comparison of the INOV characteristics of the two major subclasses of TeV detected BL Lacs, namely LBLs and HBLs, for which we find the INOV DCs to be ~ 63 % and ~ 38 %, respectively. This demonstrates that the INOV differential between LBLs and HBLs persists even when only their TeV detected subsets are considered. Despite dense sampling, the intranight light curves of the 22 TeV blazars have not revealed even a single feature on time scale substantially shorter than 1 hour, even though the inner jets of TeV blazars are believed to have exceptionally large bulk Lorentz factors (and correspondingly stronger time compression). An intriguing feature, clearly detected in the light curve of the HBL J1555+1111, is a 4 per cent `dip on a 1 hour timescale. This unique feature could have arisen from absorption in a dusty gas cloud, occulting a superluminally moving optical knot in the parsec scale jet of this relatively luminous BL Lacs object.
We monitored BL Lacertae simultaneously in the optical B, V, R and I bands for 13 nights during the period 2012-2016. The variations were well correlated in all bands and the source showed significant intraday variability (IDV). We also studied its optical flux and colour behaviour, and searched for inter-band time lags. A strong bluer-when-brighter chromatism was found on the intra-night time-scale. The spectral changes are not sensitive to the host galaxy contribution. Cross-correlation analysis revealed possible time delay of about 10 min between variations in the V and R bands. We interpreted the observed flares in terms of the model consisting of individual synchrotron pulses.
We have examined 40 NuSTAR light curves (LCs) of five TeV emitting high synchrotron peaked blazars: 1ES 0229+200, Mrk 421, Mrk 501, 1ES 1959+650 and PKS 2155-304. Four of the blazars showed intraday variability in the NuSTAR energy range of 3-79 keV. Using an auto correlation function analysis we searched for intraday variability timescales in these LCs and found indications of several between 2.5 and 32.8 ks in eight LCs of Mrk 421, a timescale around 8.0 ks for one LC of Mrk 501, and timescales of 29.6 ks and 57.4 ks in two LCs of PKS 2155-304. The other two blazars LCs do not show any evidence for intraday variability timescales shorter than the lengths of those observations, however, the data was both sparser and noisier, for them. We found positive correlations with zero lag between soft (3-10 keV) and hard (10-79 keV) bands for most of the LCs, indicating that their emissions originate from the same electron population. We examined spectral variability using a hardness ratio analysis and noticed a general harder-when-brighter behavior. The 22 LCs of Mrk 421 observed between July 2012 and April 2013 show that this source was in a quiescent state for an extended period of time and then underwent an unprecedented double peaked outburst while monitored on a daily basis during 10 - 16 April 2013. We briefly discuss models capable of explaining these blazar emissions.