Defining a computational basis of pseudo-number states, we interpret a coherent state of large amplitude, $|alpha|ggfrac{d}{2pi}$, as a qudit --- a $d$-level quantum system --- in a state that is an even superposition of $d$ pseudo-number states. A pair of such coherent-state qudits can be prepared in maximally entangled state by generalized Controlled-$Z$ operation that is based on cross-Kerr nonlinearity, which can be weak for large $d$. Hence, a coherent-state optical qudit cluster state can be prepared by repetitive application of the generalized Controlled-$Z$ operation to a set of coherent states. We thus propose an optical qudit teleportation as a simple demonstration of cluster state quantum computation.