Do you want to publish a course? Click here

Plasma Excitations in Graphene: Their Spectral Intensity and Temperature Dependence in Magnetic Field

136   0   0.0 ( 0 )
 Added by Yu-Huang Chiu
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we calculated the dielectric function, the loss function, the magnetoplasmon dispersion relation and the temperature-induced transitions for graphene in a uniform perpendicular magnetic field B. The calculations were performed using the Peierls tight-binding model to obtain the energy band structure and the random-phase approximation to determine the collective plasma excitation spectrum. The single-particle and collective excitations have been precisely identified based on the resonant peaks in the loss function. The critical wave vector at which plasmon damping takes place is clearly established. This critical wave vector depends on the magnetic field strength as well as the levels between which the transition takes place. The temperature effects were also investigated. At finite temperature, there are plasma resonances induced by the Fermi distribution function. Whether such plasmons exist is mainly determined by the field strength, temperature, and momentum. The inelastic light scattering spectroscopies could be used to verify the magnetic field and temperature induced plasmons.



rate research

Read More

We report on the observation of terahertz radiation induced edge photogalvanic currents in graphene, which are nonlinear in intensity. The increase of the radiation intensities up to MW/cm$^2$ results in a complex nonlinear intensity dependence of the photocurrent. The nonlinearity is controlled by the back gate voltage, temperature and radiation frequency. A microscopic theory of the nonlinear edge photocurrent is developed. Comparison of the experimental data and theory demonstrates that the nonlinearity of the photocurrent is caused by the interplay of two mechanisms, i.e. by direct inter-band optical transitions and Drude-like absorption. Both photocurrents saturate at high intensities, but have different intensity dependencies and saturation intensities. The total photocurrent shows a complex sign-alternating intensity dependence. The functional behaviour of the saturation intensities and amplitudes of both kinds of photogalvanic currents depending on gate voltages, temperature, radiation frequency and polarization is in a good agreement with the developed theory.
We report a study on the temperature dependence of the charge-neutral crystal field (dd) excitations in cupric oxide, using nonresonant inelastic x-ray scattering (IXS) spectroscopy. Thanks to a very high energy resolution (60 meV), we observe thermal effects on the dd excitation spectrum fine structure between temperatures of 10-320 K. With an increasing temperature, the spectra broaden considerably. We assign the temperature dependence of the dd excitations to the relatively large electron-phonon coupling.
Using a semiclassical Boltzmann transport equation (BTE) approach, we derive analytical expressions for electric and thermoelectric transport coefficients of graphene in the presence and absence of a magnetic field. Scattering due to acoustic phonons, charged impurities and vacancies are considered in the model. Seebeck ($S_{xx}$) and Nernst ($N$) coefficients have been evaluated as functions of carrier density, temperature, scatterer concentration, magnetic field and induced band gap, and the results are compared with experimental data. $S_{xx}$ is an odd function of Fermi energy while $N$ is an even function, as observed in experiments. The peaks of both coefficients are found to increase with decreasing scatterer concentration and increasing temperature. Furthermore, opening a band gap decreases $N$ but increases $S_{xx}$. Applying a magnetic field introduces an asymmetry in the variation of $S_{xx}$ with Fermi energy across the Dirac point. The formalism is more accurate and computationally efficient than the conventional Greens function approach used to model transport coefficients and can be used to explore transport properties of other exotic materials.
81 - M. Goryca , X. Zhang , J. Li 2020
Artificial spin ices (ASIs) are interacting arrays of lithographically-defined nanomagnets in which novel frustrated magnetic phases can be intentionally designed. A key emergent description of fundamental excitations in ASIs is that of magnetic monopoles -- mobile quasiparticles that carry an effective magnetic charge. Here we demonstrate that the archetypal square ASI lattice can host, in specific regions of its magnetic phase diagram, high-density plasma-like regimes of mobile magnetic monopoles. By passively listening to spontaneous monopole noise in thermal equilibrium, we reveal their intrinsic dynamics and show that monopole kinetics are minimally correlated (that is, most diffusive) in the plasma phase. These results open the door to on-demand monopole regimes having field-tunable densities and dynamic properties, thereby providing a new paradigm for probing the physics of effective magnetic charges in synthetic matter.
A weak perpendicular magnetic field, $B$, breaks the chiral symmetry of each valley in the electron spectrum of graphene, preserving the overall chiral symmetry in the Brillouin zone. We explore the consequences of this symmetry breaking for the interaction effects in graphene. In particular, we demonstrate that the electron-electron interaction lifetime acquires an anomalous $B$-dependence. Also, the ballistic zero-bias anomaly, $delta u(omega)$, where $omega$ is the energy measured from the Fermi level, emerges at a weak $B$ and has the form $delta u(B)sim B^2/omega^2$. Temperature dependence of the magnetic-field corrections to the thermodynamic characteristics of graphene is also anomalous. We discuss experimental manifestations of the effects predicted. The microscopic origin of the $B$-field sensitivity is an extra phase acquired by the electron wave-function resulting from the chirality-induced pseudospin precession.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا