Do you want to publish a course? Click here

Physical Equivalence of Pure States and Derivation of Qubit in General Probabilistic Theories

169   0   0.0 ( 0 )
 Added by Gen Kimura
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we investigate a characterization of Quantum Mechanics by two physical principles based on general probabilistic theories. We first give the operationally motivated definition of the physical equivalence of states and consider the principle of the physical equivalence of pure states, which turns out to be equivalent to the symmetric structure of the state space. We further consider another principle of the decomposability with distinguishable pure states. We give classification theorems of the state spaces for each principle, and derive the Bloch ball in 2 and 3 dimensional systems by these principles.



rate research

Read More

In this note we lay some groundwork for the resource theory of thermodynamics in general probabilistic theories (GPTs). We consider theories satisfying a purely convex abstraction of the spectral decomposition of density matrices: that every state has a decomposition, with unique probabilities, into perfectly distinguishable pure states. The spectral entropy, and analogues using other Schur-concave functions, can be defined as the entropy of these probabilities. We describe additional conditions under which the outcome probabilities of a fine-grained measurement are majorized by those for a spectral measurement, and therefore the spectral entropy is the measurement entropy (and therefore concave). These conditions are (1) projectivity, which abstracts aspects of the Lueders-von Neumann projection postulate in quantum theory, in particular that every face of the state space is the positive part of the image of a certain kind of projection operator called a filter; and (2) symmetry of transition probabilities. The conjunction of these, as shown earlier by Araki, is equivalent to a strong geometric property of the unnormalized state cone known as perfection: that there is an inner product according to which every face of the cone, including the cone itself, is self-dual. Using some assumptions about the thermodynamic cost of certain processes that are partially motivated by our postulates, especially projectivity, we extend von Neumanns argument that the thermodynamic entropy of a quantum system is its spectral entropy to generalized probabilistic systems satisfying spectrality.
135 - Gokhan Torun , Ali Yildiz 2019
The states of three-qubit systems split into two inequivalent types of genuine tripartite entanglement, namely the Greenberger-Horne-Zeilinger (GHZ) type and the $W$ type. A state belonging to one of these classes can be stochastically transformed only into a state within the same class by local operations and classical communications. We provide local quantum operations, consisting of the most general two-outcome measurement operators, for the deterministic transformations of three-qubit pure states in which the initial and the target states are in the same class. We explore these transformations, originally having standard GHZ and standard $W$ states, under the local measurement operations carried out by a single party and $p$ ($p=2,3$) parties (successively). We find a notable result that the standard GHZ state cannot be deterministically transformed to a GHZ-type state in which all its bipartite entanglements are nonzero, i.e., a transformation can be achieved with unit probability when the target state has at least one vanishing bipartite concurrence.
Resource theories provide a general framework for the characterization of properties of physical systems in quantum mechanics and beyond. Here, we introduce methods for the quantification of resources in general probabilistic theories (GPTs), focusing in particular on the technical issues associated with infinite-dimensional state spaces. We define a universal resource quantifier based on the robustness measure, and show it to admit a direct operational meaning: in any GPT, it quantifies the advantage that a given resource state enables in channel discrimination tasks over all resourceless states. We show that the robustness acts as a faithful and strongly monotonic measure in any resource theory described by a convex and closed set of free states, and can be computed through a convex conic optimization problem. Specializing to continuous-variable quantum mechanics, we obtain additional bounds and relations, allowing an efficient computation of the measure and comparison with other monotones. We demonstrate applications of the robustness to several resources of physical relevance: optical nonclassicality, entanglement, genuine non-Gaussianity, and coherence. In particular, we establish exact expressions for various classes of states, including Fock states and squeezed states in the resource theory of nonclassicality and general pure states in the resource theory of entanglement, as well as tight bounds applicable in general cases.
In this work, we investigate measurement incompatibility in general probabilistic theories (GPTs). We show several equivalent characterizations of compatible measurements. The first is in terms of the positivity of associated maps. The second relates compatibility to the inclusion of certain generalized spectrahedra. For this, we extend the theory of free spectrahedra to ordered vector spaces. The third characterization connects the compatibility of dichotomic measurements to the ratio of tensor crossnorms of Banach spaces. We use these characterizations to study the amount of incompatibility present in different GPTs, i.e. their compatibility regions. For centrally symmetric GPTs, we show that the compatibility degree is given as the ratio of the injective and the projective norm of the tensor product of associated Banach spaces. This allows us to completely characterize the compatibility regions of several GPTs, and to obtain optimal universal bounds on the compatibility degree in terms of the 1-summing constants of the associated Banach spaces. Moreover, we find new bounds on the maximal incompatibility present in more than three qubit measurements.
155 - Gokhan Torun , Ali Yildiz 2014
We propose an explicit protocol for the deterministic transformations of bipartite pure states in any dimension using deterministic transformations in lower dimensions. As an example, explicit solutions for the deterministic transformations of $3otimes 3$ pure states by a single measurement are obtained, and an explicit protocol for the deterministic transformations of $notimes n$ pure states by three-outcome measurements is presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا