Asymmetric 1+1-dimensional hydrodynamics in collision


Abstract in English

The possibility that particle production in high-energy collisions is a result of two asymmetric hydrodynamic flows is investigated, using the Khalatnikov form of the 1+1-dimensional approximation of hydrodynamic equations. The general solution is discussed and applied to the physically appealing generalized in-out cascade where the space-time and energy-momentum rapidities are equal at initial temperature but boost-invariance is not imposed. It is demonstrated that the two-bump structure of the entropy density, characteristic of the asymmetric input, changes easily into a single broad maximum compatible with data on particle production in symmetric processes. A possible microscopic QCD interpretation of asymmetric hydrodynamics is proposed.

Download