Do you want to publish a course? Click here

A Layer Correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test

228   0   0.0 ( 0 )
 Added by Karl-Johan Grahn
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of energy deposits in the calorimeter layers, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20 GeV and 180 GeV, the particle energy is reconstructed within 3% and the energy resolution is improved by between 11% and 25% compared to the resolution at the electromagnetic scale.



rate research

Read More

A small set of final prototypes of the ATLAS Inner Detector silicon tracker (Pixel and SCT) were used to take data during the 2004 Combined Test Beam. Data were collected from runs with beams of different flavour (electrons, pions, muons and photons) with a momentum range of 2 to 180 GeV/c. Four independent methods were used to align the silicon modules. The corrections obtained were validated using the known momenta of the beam particles and were shown to yield consistent results among the different alignment approaches. From the residual distributions, it is concluded that the precision attained in the alignment of the silicon modules is of the order of 5 micrometers in their most precise coordinate.
The Cosmic Ray Energetics And Mass experiment for the International Space Station (ISS-CREAM) was installed on the ISS to measure high-energy cosmic-ray elemental spectra for the charge range $rm Z=1$ to 26. The ISS-CREAM instrument includes a tungsten scintillating-fiber calorimeter preceded by a carbon target for energy measurements. The carbon target induces hadronic interactions, and showers of secondary particles develop in the calorimeter. The energy deposition in the calorimeter is proportional to the particle energy. As a predecessor to ISS-CREAM, the balloon-borne CREAM instrument was successfully flown seven times over Antarctica for a cumulative exposure of 191 days. The CREAM calorimeter demonstrated its capability to measure energies of cosmic-ray particles, and the ISS-CREAM calorimeter is expected to have a similar performance. Before the launch, an engineering-unit calorimeter was shipped to CERN for calibration and performance tests. This beam test included position, energy, and angle scans of electron and pion beams together with a high-voltage scan for calibration and characterization. Additionally, an attenuation effect in the scintillating fibers was studied. In this paper, beam test results, including corrections for the attenuation effect, are presented.
295 - Feng Li , Xinxin Wang , Peng Miao 2018
A completely New Small Wheel (NSW) will be constructed for ATLAS Phase-1 upgrade. Small-Strip Thin-Gap-Chamber (sTGC) will devote to the trigger function of NSW. A full-size sTGC quadruplet consists of 4 layers, and will need 4 pad Front-End-Boards and 4 strip Front-End-Boards for sTGC signals readout. The 8 boards should be readout simultaneously at a time. This paper presents the study of multi-layer sTGC test system, a FEB Driver Card (FEBDC) is designed for pFEB and sFEB boards handling. The design and test of FEBDC are described in details.
154 - G. Eigen , T. Buanes 2009
We present herein our experience with the calibration system in the CALICE AHCAL prototype in the test beam and discuss characterizations of the SiPM response curves.
130 - Satoru Uozumi 2009
The scintillator-strip electromagnetic calorimeter (ScECAL) is one of the calorimeter technologies which can achieve fine granularity required for the particle flow algorithm. Second prototype of the ScECAL has been built and tested with analog hadron calorimeter (AHCAL) and tail catcher (TCMT) in September 2008 at Fermilab meson test beam facility. Data are taken with 1 to 32 GeV of electron, pion and muon beams to evaluate all the necessary performances of the ScECAL, AHCAL and TCMT system. This manuscript describes overview of the beam test and very preliminary results focusing on the ScECAL part.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا