Scattering amplitudes in planar N=4 super Yang-Mills theory reveal a remarkable symmetry structure. In addition to the superconformal symmetry of the Lagrangian of the theory, the planar amplitudes exhibit a dual superconformal symmetry. The presence of this additional symmetry imposes strong restrictions on the amplitudes and is connected to a duality relating scattering amplitudes to Wilson loops defined on polygonal light-like contours. The combination of the superconformal and dual superconformal symmetries gives rise to a Yangian, an algebraic structure which is known to be related to the appearance of integrability in other regimes of the theory. We discuss two dual formulations of the symmetry and address the classification of its invariants.