The design of protocols to suppress the propagation of viral infections is an enduring enterprise, especially hindered by limited knowledge of the mechanisms through which extinction of infection propagation comes about. We here report on a mechanism causing extinction of a propagating infection due to intraspecific competition to infect susceptible hosts. Beneficial mutations allow the pathogen to increase the production of progeny, while the host cell is allowed to develop defenses against infection. When the number of susceptible cells is unlimited, a feedback runaway co-evolution between host resistance and progeny production occurs. However, physical space limits the advantage that the virus can obtain from increasing offspring numbers, thus infection clearance may result from an increase in host defenses beyond a finite threshold. Our results might be relevant to better understand propagation of viral infections in tissues with mobility constraints, and the implications that environments with different geometrical properties might have in devising control strategies.