No Arabic abstract
Recently, we have proposed a redox molecular hypothesis about the natural biophysical substrate of visual perception and imagery (Bokkon, 2009. BioSystems; Bokkon and DAngiulli, 2009. Bioscience Hypotheses). Namely, the retina transforms external photon signals into electrical signals that are carried to the V1 (striate cortex). Then, V1 retinotopic electrical signals (spike-related electrical signals along classical axonal-dendritic pathways) can be converted into regulated ultraweak bioluminescent photons (biophotons) through redox processes within retinotopic visual neurons that make it possible to create intrinsic biophysical pictures during visual perception and imagery. However, the consensus opinion is to consider biophotons as by-products of cellular metabolism. This paper argues that biophotons are not by-products, other than originating from regulated cellular radical/redox processes. It also shows that the biophoton intensity can be considerably higher inside cells than outside. Our simple calculations, within a level of accuracy, suggest that the real biophoton intensity in retinotopic neurons may be sufficient for creating intrinsic biophysical picture representation of a single-object image during visual perception.
Many cells use calcium signalling to carry information from the extracellular side of the plasma membrane to targets in their interior. Since virtually all cells employ a network of biochemical reactions for Ca2+ signalling, much effort has been devoted to understand the functional role of Ca2+ responses and to decipher how their complex dynamics is regulated by the biochemical network of Ca2+-related signal transduction pathways. Experimental observations show that Ca2+ signals in response to external stimuli encode information via frequency modulation or alternatively via amplitude modulation. Although minimal models can capture separately both types of dynamics, they fail to exhibit different and more advanced encoding modes. By arguments of bifurcation theory, we propose instead that under some biophysical conditions more complex modes of information encoding can also be manifested by minimal models. We consider the minimal model of Li and Rinzel and show that information encoding can occur by amplitude modulation (AM) of Ca2+ oscillations, by frequency modulation (FM) or by both modes (AFM). Our work is motivated by calcium signalling in astrocytes, the predominant type of cortical glial cells that is nowadays recognized to play a crucial role in the regulation of neuronal activity and information processing of the brain. We explain that our results can be crucial for a better understanding of synaptic information transfer. Furthermore, our results might also be important for better insight on other examples of physiological processes regulated by Ca2+ signalling.
We address the problem of estimating image difficulty defined as the human response time for solving a visual search task. We collect human annotations of image difficulty for the PASCAL VOC 2012 data set through a crowd-sourcing platform. We then analyze what human interpretable image properties can have an impact on visual search difficulty, and how accurate are those properties for predicting difficulty. Next, we build a regression model based on deep features learned with state of the art convolutional neural networks and show better results for predicting the ground-truth visual search difficulty scores produced by human annotators. Our model is able to correctly rank about 75% image pairs according to their difficulty score. We also show that our difficulty predictor generalizes well to new classes not seen during training. Finally, we demonstrate that our predicted difficulty scores are useful for weakly supervised object localization (8% improvement) and semi-supervised object classification (1% improvement).
For several decades optical tweezers have proven to be an invaluable tool in the study and analysis of a myriad biological responses and applications. However, as every tool, it can have undesirable or damaging effects upon the very sample it is helping to study. In this review the main negative effects of optical tweezers upon biostructures and living systems will be presented. Three are the main areas on which the review will focus: linear optical excitation within the tweezers, non-linear photonic effects, and thermal load upon the sampled volume. Additional information is provided on negative mechanical effects of optical traps on biological structures. Strategies to avoid or, in the least, minimize these negative effects will be introduced. Finally, all these effects, undesirable for the most, can have positive applications under the right conditions. Some hints in this direction will also be discussed.
Insects use visual information to estimate angular velocity of retinal image motion, which determines a variety of flight behaviours including speed regulation, tunnel centring and visual navigation. For angular velocity estimation, honeybees show large spatial-independence against visual stimuli, whereas the previous models have not fulfilled such an ability. To address this issue, we propose a bio-plausible model for estimating the image motion velocity based on behavioural experiments of the honeybee flying through patterned tunnels. The proposed model contains mainly three parts, the texture estimation layer for spatial information extraction, the delay-and-correlate layer for temporal information extraction and the decoding layer for angular velocity estimation. This model produces responses that are largely independent of the spatial frequency in grating experiments. And the model has been implemented in a virtual bee for tunnel centring simulations. The results coincide with both electro-physiological neuron spike and behavioural path recordings, which indicates our proposed method provides a better explanation of the honeybees image motion detection mechanism guiding the tunnel centring behaviour.
Zinc, a suspected potentiator of learning and memory, is shown to affect exocytotic release and storage in neurotransmitter-containing vesicles. Structural and size analysis of the vesicular dense core and halo using transmission electron microscopy was combined with single-cell amperometry to study the vesicle size changes induced after zinc treatment and to compare these changes to theoretical predictions based on the concept of partial release as opposed to full quantal release. This powerful combined analytical approach establishes the existence of an unsuspected strong link between vesicle structure and exocytotic dynamics which can be used to explain the mechanism of regulation of synaptic plasticity by Zn 2+ through modulation of neurotransmitter release.