No Arabic abstract
The dominant reaction pathway (DRP) is a rigorous framework to microscopically compute the most probable trajectories, in non-equilibrium transitions. In the low-temperature regime, such dominant pathways encode the information about the reaction mechanism and can be used to estimate non-equilibrium averages of arbitrary observables. On the other hand, at sufficiently high temperatures, the stochastic fluctuations around the dominant paths become important and have to be taken into account. In this work, we develop a technique to systematically include the effects of such stochastic fluctuations, to order k_B T. This method is used to compute the probability for a transition to take place through a specific reaction channel and to evaluate the reaction rate.
We investigate a particular phase transition between two different tunneling regimes, direct and injection (Fowler-Nordheim), experimentally observed in the current-voltage characteristics of the light receptor bacteriorhodopsin (bR). Here, the sharp increase of the current above about 3 V is theoretically interpreted as the cross-over between the direct and injection sequential-tunneling regimes. Theory also predicts a very special behaviour for the associated current fluctuations around steady state. We find the remarkable result that in a large range of bias around the transition between the two tunneling regimes, the probability density functions can be traced back to the generalization of the Gumbel distribution. This non-Gaussian distribution is the universal standard to describe fluctuations under extreme conditions.
We consider the motion of an active Brownian particle with speed fluctuations in d-dimensions in the presence of both translational and orientational diffusion. We use an Ornstein-Uhlenbeck process for active speed generation. Using a Laplace transform approach, we describe and use a Fokker-Planck equation-based method to evaluate the exact time dependence of all relevant dynamical moments. We present explicit calculations of such moments and compare our analytical predictions against numerical simulations to demonstrate and analyze several dynamical crossovers. The kurtosis of displacement shows positive or negative deviations from a Gaussian behavior at intermediate times depending on the dominance of speed or orientational fluctuations.
Classical density functional theory for finite temperatures is usually formulated in the grand-canonical ensemble where arbitrary variations of the local density are possible. However, in many cases the systems of interest are closed with respect to mass, e.g. canonical systems with fixed temperature and particle number. Although the tools of standard, grand-canonical density functional theory are often used in an ad hoc manner to study closed systems, their formulation directly in the canonical ensemble has so far not been known. In this work, the fundamental theorems underlying classical DFT are revisited and carefully compared in the two ensembles showing that there are only trivial formal differences. The practicality of DFT in the canonical ensemble is then illustrated by deriving the exact Helmholtz functional for several systems: the ideal gas, certain restricted geometries in arbitrary numbers of dimensions and finally a system of two hard-spheres in one dimension (hard rods) in a small cavity. Some remarkable similarities between the ensembles are apparent even for small systems with the latter showing strong echoes of the famous exact of result of Percus in the grand-canonical ensemble.
The well-known classical nucleation theory (CNT) for the free energy barrier towards formation of a nucleus of critical size of the new stable phase within the parent metastable phase fails to take into account the influence of other metastable phases having density/order intermediate between the parent metastable phase and the final stable phase. This lacuna can be more serious than capillary approximation or spherical shape assumption made in CNT. This issue is particularly significant in ice nucleation because liquid water shows rich phase diagram consisting of two (high and low density) liquid phases in supercooled state. The explanations of thermodynamic and dynamic anomalies of supercooled water often invoke the possible influence of a liquid-liquid transition between two metastable liquid phases. To investigate both the role of thermodynamic anomalies and presence of distinct metastable liquid phases in supercooled water on ice nucleation, we employ density functional theoretical approach to find nucleation free energy barrier in different regions of phase diagram. The theory makes a number of striking predictions, such as a dramatic lowering of nucleation barrier due to presence of a metastable intermediate phase and crossover in the dependence of free energy barrier on temperature near liquid-liquid critical point. These predictions can be tested by computer simulations as well as by controlled experiments.
Extending recent work on stress fluctuations in complex fluids and amorphous solids we describe in general terms the ensemble average $v(Delta t)$ and the standard deviation $delta v(Delta t)$ of the variance $v[mathbf{x}]$ of time series $mathbf{x}$ of a stochastic process $x(t)$ measured over a finite sampling time $Delta t$. Assuming a stationary, Gaussian and ergodic process, $delta v$ is given by a functional $delta v_G[h]$ of the autocorrelation function $h(t)$. $delta v(Delta t)$ is shown to become large and similar to $v(Delta t)$ if $Delta t$ corresponds to a fast relaxation process. Albeit $delta v = delta v_G[h]$ does not hold in general for non-ergodic systems, the deviations for common systems with many microstates are merely finite-size corrections. Various issues are illustrated for shear-stress fluctuations in simple coarse-grained model systems.