Do you want to publish a course? Click here

Astrometry and Exoplanets: the Gaia Era, and Beyond

149   0   0.0 ( 0 )
 Added by Alessandro Sozzetti
 Publication date 2010
  fields Physics
and research's language is English
 Authors A. Sozzetti




Ask ChatGPT about the research

The wealth of information in the Gaia catalogue of exoplanets will constitute a fundamental contribution to several hot topics of the astrophysics of planetary systems. I briefly review the potential impact of Gaia micro-arsec astrometry in several areas of exoplanet science, discuss what key follow-up observations might be required as a complement to Gaia data, and shed some light on the role of next generation astrometric facilities in the arena of planetary systems.



rate research

Read More

(abridged) We develop Bayesian methods and detection criteria for orbital fitting, and revise the detectability of exoplanets in light of the in-flight properties of Gaia. Limiting ourselves to one-planet systems as a first step of the development, we simulate Gaia data for exoplanet systems over a grid of S/N, orbital period, and eccentricity. The simulations are then fit using Markov chain Monte Carlo methods. We investigate the detection rate according to three information criteria and the delta chi^2. For the delta chi^2, the effective number of degrees of freedom depends on the mission length. We find that the choice of the Markov chain starting point can affect the quality of the results; we therefore consider two limit possibilities: an ideal case, and a very simple method that finds the starting point assuming circular orbits. Using Jeffreys scale of evidence, the fraction of false positives passing a strong evidence criterion is < ~0.2% (0.6%) when considering a 5 yr (10 yr) mission and using the Akaike information criterion or the Watanabe-Akaike information criterion, and <0.02% (<0.06%) when using the Bayesian information criterion. We find that there is a 50% chance of detecting a planet with a minimum S/N=2.3 (1.7). This sets the maximum distance to which a planet is detectable to ~70 pc and ~3.5 pc for a Jupiter-mass and Neptune-mass planet, respectively, assuming a 10 yr mission, a 4 au semi-major axis, and a 1 M_sun star. The period is the orbital parameter that can be determined with the best accuracy, with a median relative difference between input and output periods of 4.2% (2.9%) assuming a 5 yr (10 yr) mission. The median accuracy of the semi-major axis of the orbit can be recovered with a median relative error of 7% (6%). The eccentricity can also be recovered with a median absolute accuracy of 0.07 (0.06).
Astrometric positions of moving objects in the Solar System have been measured using a variety of star catalogs in the past. Previous work has shown that systematic errors in star catalogs can affect the accuracy of astrometric observations. That, in turn, can influence the resulting orbit fits for minor planets. In order to quantify these systematic errors, we compare the positions and proper motion of stellar sources in the most utilized star catalogs to the second release of the Gaia star catalog. The accuracy of Gaia astrometry allows us to unambiguously identify local biases and derive a scheme that can be used to correct past astrometric observations of solar system objects. Here we provide a substantially improved debiasing scheme for 26 astrometric catalogs that were extensively used in minor planet astrometry. Revised corrections near the galactic center eliminate artifacts that could be traced back to reference catalogs used in previous debiasing schemes. Median differences in stellar positions between catalogs now tend to be on the order of several tens of milliarcseconds (mas) but can be as large as 175 mas. Median stellar proper motion corrections scatter around 0.3 mas/yr and range from 1 to 4 mas/yr for star catalogs with and without proper motion, respectively. The tables in this work are meant to be applied to existing optical observations. They are not intended to correct new astrometric measurments as those should make use of the Gaia astrometric catalog. Since previous debiasing schemes already reduced systematics in past observations to a large extent, corrections beyond the current work may not be needed in the foreseeable future.
The power of micro-arcsecond ($mu$as) astrometry is about to be unleashed. ESAs Gaia mission, now headed towards the end of the first year of routine science operations, will soon fulfil its promise for revolutionary science in countless aspects of Galactic astronomy and astrophysics. The potential of Gaia position measurements for important contributions to the astrophysics of planetary systems is huge. We focus here on the expectations for detection and improved characterization of young planetary systems in the neighborhood of the Sun using a combination of Gaia $mu$as astrometry and direct imaging techniques.
143 - A. Sozzetti 2012
In its all-sky survey, Gaia will monitor astrometrically hundreds of thousands of main-sequence stars within $approx200$ pc, looking for the presence of giant planetary companions within a few AUs from their host stars. Indeed, Gaia observations will have great impact is the astrophysics of planetary systems (e.g., Casertano et al. 2008), in particular when seen as a complement to other techniques for planet detection and characterization (e.g., Sozzetti 2011). In this paper, I briefly address some of the relevant technical issues associated with the precise and accurate determination of astrometric orbits of planetary systems using Gaia data. I then highlight some of the important synergies between Gaia high-precision astrometry and other ongoing and planned, indirect and direct planet-finding and characterization programs, both from the ground and in space, and over a broad range of wavelengths, providing preliminary results related to one specific example of such synergies.
Gaia is an astrometric mission that will be launched in spring 2013. There are many scientific outcomes from this mission and as far as our Solar System is concerned, the satellite will be able to map thousands of main belt asteroids (MBAs) and near-Earth objects (NEOs) down to magnitude < 20. The high precision astrometry (0.3-5 mas of accuracy) will allow orbital improvement, mass determination, and a better accuracy in the prediction and ephemerides of potentially hazardous asteroids (PHAs). We give in this paper some simulation tests to analyse the impact of Gaia data on known asteroids orbit, and their value for the analysis of NEOs through the example of asteroid (99942) Apophis. We then present the need for a follow-up network for newly discovered asteroids by Gaia, insisting on the synergy of ground and space data for the orbital improvement.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا