Do you want to publish a course? Click here

Theoretical Study of New Acceptor and Donor Molecules based on Polycyclic Aromatic Hydrocarbons

141   0   0.0 ( 0 )
 Added by Sergej Nepijko
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Functionalized polcyclic aromatic hydrocarbons (PAHs) are an interesting class of molecules in which the electronic state of the graphene-like hydrocarbon part is tuned by the functional group. Searching for new types of donor and acceptor molecules, a set of new PAHs has recently been investigated experimentally using ultraviolet photoelectron spectroscopy (UPS). In this work, the electronic structure of the PAHs is studied numerically with the help of B3LYP hybrid density functionals. Using the DELTA-SCF method, electron binding energies have been determined which affirm, specify and complement the UPS data. Symmetry properties of molecular orbitals are analyzed for a categorization and an estimate of the related signal strength. While SIGMA-like orbitals are difficult to detect in UPS spectra of condensed film, calculation provides a detailed insight into the hidden parts of the electronic structure of donor and acceptor molecules. In addition, a diffuse basis set (6-311++G**) was used to calculate electron affinity and LUMO eigenvalues. The calculated electron affinity (EA) provides a classification of the donor/acceptor properties of the studied molecules. Coronene-hexaone shows a high EA, comparable to TCNQ, which is a well-known classical acceptor. Calculated HOMO-LUMO gaps using the related eigenvalues have a good agreement with the experimental lowest excitation energies. TD-DFT also accurately predicts the measured optical gap.



rate research

Read More

The electronic and optical properties of polycyclic aromatic hydrocarbons (PAHs) present a strong dependence on their size and geometry. We tackle this issue by analyzing the spectral features of two prototypical classes of PAHs, belonging to D6h and D2h symmetry point groups and related to coronene as multifunctional seed. While the size variation induces an overall red shift of the spectra and a redistribution of the oscillator strength between the main peaks, a lower molecular symmetry is responsible for the appearance of new optical features. Along with broken molecular orbital degeneracies, optical peaks split and dark states are activated in the low-energy part of the spectrum. Supported by a systematic analysis of the composition and the character of the optical transitions, our results contribute in shedding light to the mechanisms responsible for spectral modifications in the visible and near UV absorption bands of medium-size PAHs.
Present routes to produce magnetic organic-based materials adopt a common strategy: the use of magnetic species (atoms, polyradicals, etc.) as building blocks. We explore an alternative approach which consists of selective hydrogenation of Polycyclic Aromatic Hydrocarbons. Self-Consistent-Field (SCF) (Hartree-Fock and DFT) and multi-configurational (CISD and MCSCF) calculations on coronene and corannulene, both hexa-hydrogenated, show that the formation of stable high spin species is possible. The spin of the ground states is discussed in terms of the Hund rule and Liebs theorem for bipartite lattices (alternant hydrocarbons in this case). This proposal opens a new door to magnetism in the organic world.
The amount of deuterium locked up in polycyclic aromatic hydrocarbons (PAHs) has to date been an uncertain value. We present a near-infrared (NIR) spectroscopic survey of HII regions in the Milky Way, Large Magellanic Cloud (LMC), and Small Magellanic Cloud (SMC) obtained with AKARI, which aims to search for features indicative of deuterated PAHs (PAD or Dn-PAH) to better constrain the D/H ratio of PAHs. Fifty-three HII regions were observed in the NIR (2.5-5 {mu}m), using the Infrared Camera (IRC) on board the AKARI satellite. Through comparison of the observed spectra with a theoretical model of deuterated PAH vibrational modes, the aromatic and (a)symmetric aliphatic C-D stretch modes were identified. We see emission features between 4.4-4.8 {mu}m, which could be unambiguously attributed to deuterated PAHs in only six of the observed sources, all of which are located in the Milky Way. In all cases, the aromatic C-D stretching feature is weaker than the aliphatic C-D stretching feature, and, in the case of M17b, this feature is not observed at all. Based on the weak or absent PAD features in most of the observed spectra, it is suggested that the mechanism for PAH deuteration in the ISM is uncommon.
We report on a common fragment ion formed during the electron-ionization-induced fragmentation of three different three-ring polycyclic aromatic hydrocarbons (PAHs), fluorene (C$_{13}$H$_{10}$), 9,10-dihydrophenanthrene (C$_{14}$H$_{12}$), and 9,10-dihydroanthracene (C$_{14}$H$_{12}$). The infrared spectra of the mass-isolated product ions with $m/z=165$ were obtained in a Fourier transform ion cyclotron resonance mass spectrometer whose cell was placed inside the optical cavity of an infrared free-electron laser, thus providing the high photon fluence required for efficient infrared multiple-photon dissociation. The infrared spectra of the $m/z=165$ species generated from the three different precursors were found to be similar, suggesting the formation of a single C$_{13}$H$_{9}^+$ isomer. Theoretical calculations using density functional theory (DFT) revealed the fragments identity as the closed-shell fluorenyl cation. Decomposition pathways from each parent precursor to the fluorenyl ion are proposed on the basis of DFT calculations. The identification of a single fragmentation product from three different PAHs supports the notion of the existence of common decomposition pathways of PAHs in general and can aid in understanding the fragmentation chemistry of astronomical PAH species.
Recent calculations have shown that the UV bump at about 217.5 nm in the extinction curve can be explained by a complex mixture of PAHs in several charge states. Other studies proposed that the carriers are a restricted population made of neutral and singly-ionised dehydrogenated coronene molecules (C24Hn, n less than 3), in line with models of the hydrogenation state of interstellar PAHs predicting that medium-sized species are highly dehydrogenated. To assess the observational consequences of the latter hypothesis we have undertaken a systematic study of the electronic spectra of dehydrogenated PAHs. We use our first results to see whether such spectra show strong general trends upon dehydrogenation. We used state-of-the-art techniques in the framework of the density functional theory (DFT) to obtain the electronic ground-state geometries, and of the time- dependent DFT to evaluate the electronic excited-state properties. We computed the absorption cross-section of the species C24Hn (n=12,10,8,6,4,2,0) in their neutral and cationic charge-states. Similar calculations were performed for other PAHs and their fullydehydrogenated counterparts. pi electron energies are always found to be strongly affected by dehydrogenation. In all cases we examined, progressive dehydrogenation translates into a correspondingly progressive blue shift of the main electronic transitions. In particular, the pi-pi* collective resonance becomes broader and bluer with dehydrogenation. Its calculated energy position is therefore predicted to fall in the gap between the UV bump and the far-UV rise of the extinction curve. Since this effect appears to be systematic, it poses a tight observational limit on the column density of strongly dehydrogenated medium-sized PAHs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا