We investigate the generalized parton distributions (GPDs) for u and d quarks in a proton in transverse and longitudinal position space using a recent phenomenological parametrization. We take nonzero skewness zeta and consider the region x> zeta. Impact parameter space representation of the GPD E is found to depend sharply on the parameters used within the model, in particular in the low x region. In longitudinal position space a diffraction pattern is observed, as seen before in several other model
We present a study of proton GPDs in both momentum and position spaces using proton wavefunction obtained from AdS/ QCD. Here we consider the soft wall model. The results are compared with a phenomenological model of proton GPDs.
We use detailed balance for a hadron composed of quark and gluon Fock states to obtain parton distributions in the proton and pion on the basis of a simple statistical model.
We derive one-loop matching relations for the Ioffe-time distributions related to the pion distribution amplitude (DA) and generalized parton distributions (GPDs). They are obtained from a universal expression for the one-loop correction in an operator form, and will be used in the ongoing lattice calculations of the pion DA and GPDs based on the parton pseudo-distributions approach.
We show how the double parton distributions may be obtained consistently from the many-body light-cone wave functions. We illustrate the method on the example of the pion with two Fock components. The procedure, by construction, satisfies the Gaunt-Stirling sum rules. The resulting single parton distributions of valence quarks and gluons are consistent with a phenomenological parametrization at a low scale.
We investigate the relations between transverse momentum dependent parton distributions (TMDs) and generalized parton distributions (GPDs) in a light-front quark-diquark model motivated by soft wall AdS/QCD. Many relations are found to have similar structure in different models. It is found that a relation between the Sivers function and the GPD $E_q$ can be obtained in this model in terms of a lensing function. The quark orbital angular momentum is calculated and the results are compared with the results in other similar models. Implications of the results are discussed. Relations among different TMDs in the model are also presented.
R. Manohar
,A. Mukherjee
,D. Chakrabarti
.
(2010)
.
"Generalized Parton Distributions for the Proton in Position Space : Non-Zero Skewness"
.
Asmita Mukherjee
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا