Do you want to publish a course? Click here

Dynamical symmetry breaking of SU(6) GUT in 5-dimensional spacetime with orbifold S1/Z2

158   0   0.0 ( 0 )
 Added by L.T. Handoko
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

The symmetry breaking of 5-dimensional SU(6) GUT into 4-dimensional SU(3) x SU(3) x U(1) with orbifold S1/Z2 through Scherk-Schwarz mechanism is investigated. It is shown that the origin of Little Higgs can be generated to further break SU(3) x SU(3) x U(1) down to the electroweak scale through Higgs mechanism.



rate research

Read More

The symmetry breaking of five-dimensional SU(6) GUT is realized by Scherk-Schwarz mechanisms through trivial and pseudo nontrivial orbifold S1/Z2 breakings to produce dimensional deconstruction 5D SU(6) rightarrow4D SU(6). The latter also induces near-brane weakly-coupled SU(6) Baby Higgs to further break the symmetry into SU(3)C otimes SU(3)H otimes U(1)C. The model successfully provides a scenario of the origin of (Little) Higgs from GUT scale, produces the (intermediate and light) Higgs boson with the most preferred range and establishes coupling unification and compactification scale correctly.
Proton decay within 5-dimensional SU(6) GUT with orbifold S^1/Z_2 breaking is investigated using Scherk-Schwarz mechanism. It is shown that in the model neither leptoquark like heavy gauge bosons nor violation of baryon number conservation are allowed due to the orbifold breaking parity splitting. These results prevent too short proton lifetime within the model.
We study the influence of messenger Yukawa couplings and top, bottom and $tau$ Yukawa couplings on the proton lifetime in SU(5) Supersymmetric GUT with dynamical supersymmetry breaking mechanism due to Dine and Nelson.
In string compactifications, frequently there appears the anomalous U(1) gauge symmetry which belonged to E8$times$E8 of the heterotic string. This anomalous U(1) gauge boson obtains mass at the compactification scale, just below $10^{18,}$GeV, by absorbing one pseudoscalar (corresponding to the model-independent axion) from the second rank anti-symmetric tensor field $B_{MN}$. Below the compactification scale, there results a global symmetry U(1)$_{rm anom}$ whose charge $Q_{rm anom}$ is the original gauge U(1) charge. This is the most natural global symmetry, realizing the invisible axion. This global symmetry U(1)$_{rm anom}$ is suitable for a flavor symmetry. In the simplest compactification model with the flipped SU(5) grand unification, we calculate all the low energy parameters in terms of the vacuum expectation values of the standard model singlets.
We analize the different ways for the spontaneous breaking of the gauge symmetry, for the $[SU(6)]^3otimes Z_3$ family unification model. In particular we study the consequences of a previous selection for the vacuum expectation values of the Higgs fields, showing that such set predicts unwanted flavor changing neutral currents at the $m_Z=91 GeVs$ mass scale. A new set of vacuum expectation values which solves this problem is proposed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا