Do you want to publish a course? Click here

A Roe-type Riemann solver based on the spectral decomposition of the equations of Relativistic Magnetohydrodynamics

145   0   0.0 ( 0 )
 Publication date 2010
  fields Physics
and research's language is English
 Authors J. M. Iba~nez




Ask ChatGPT about the research

In a recent paper (Anton et al. 2010) we have derived sets of right and left eigenvectors of the Jacobians of the relativistic MHD equations, which are regular and span a complete basis in any physical state including degenerate ones. We present a summary of the main steps followed in the above derivation and the numerical experiments carried out with the linearized (Roe-type) Riemann solver we have developed, and some note on the (non-)convex character of the relativistic MHD equations.



rate research

Read More

157 - L. Anton 2009
We obtain renormalized sets of right and left eigenvectors of the flux vector Jacobians of the relativistic MHD equations, which are regular and span a complete basis in any physical state including degenerate ones. The renormalization procedure relies on the characterization of the degeneracy types in terms of the normal and tangential components of the magnetic field to the wavefront in the fluid rest frame. Proper expressions of the renormalized eigenvectors in conserved variables are obtained through the corresponding matrix transformations. Our work completes previous analysis that present different sets of right eigenvectors for non-degenerate and degenerate states, and can be seen as a relativistic generalization of earlier work performed in classical MHD. Based on the full wave decomposition (FWD) provided by the the renormalized set of eigenvectors in conserved variables, we have also developed a linearized (Roe-type) Riemann solver. Extensive testing against one- and two-dimensional standard numerical problems allows us to conclude that our solver is very robust. When compared with a family of simpler solvers that avoid the knowledge of the full characteristic structure of the equations in the computation of the numerical fluxes, our solver turns out to be less diffusive than HLL and HLLC, and comparable in accuracy to the HLLD solver. The amount of operations needed by the FWD solver makes it less efficient computationally than those of the HLL family in one-dimensional problems. However its relative efficiency increases in multidimensional simulations.
100 - Livio Pizzocchero 2019
Inspired by an approach proposed previously for the incompressible Navier-Stokes (NS) equations, we present a general framework for the a posteriori analysis of the equations of incompressible magnetohydrodynamics (MHD) on a torus of arbitrary dimension d; this setting involves a Sobolev space of infinite order, made of C^infinity vector fields (with vanishing divergence and mean) on the torus. Given any approximate solution of the MHD Cauchy problem, its a posteriori analysis with the method of the present work allows to infer a lower bound on the time of existence of the exact solution, and to bound from above the Sobolev distance of any order between the exact and the approximate solution. In certain cases the above mentioned lower bound on the time of existence is found to be infinite, so one infers the global existence of the exact MHD solution. We present some applications of this general scheme; the most sophisticated one lives in dimension d=3, with the ABC flow (perturbed magnetically) as an initial datum, and uses for the Cauchy problem a Galerkin approximate solution in 124 Fourier modes. We illustrate the conclusions arising in this case from the a posteriori analysis of the Galerkin approximant; these include the derivation of global existence of the exact MHD solution with the ABC datum, when the dimensionless viscosity and resistivity are equal and stay above an explicitly given threshold value.
The Riemann problem, and the associated generalized Riemann problem, are increasingly seen as the important building blocks for modern higher order Godunov-type schemes. In the past, building a generalized Riemann problem solver was seen as an intricately mathematical task for complicated physical or engineering problems because the associated Riemann problem is different for each hyperbolic system of interest. This paper changes that situation. The HLLI Riemann solver is a recently-proposed Riemann solver that is universal in that it is applicable to any hyperbolic system, whether in conservation form or with non-conservative products. The HLLI Riemann solver is also complete in the sense that if it is given a complete set of eigenvectors, it represents all waves with minimal dissipation. It is, therefore, very attractive to build a generalized Riemann problem solver version of the HLLI Riemann solver. This is the task that is accomplished in the present paper. We show that at second order, the generalized Riemann problem version of the HLLI Riemann solver is easy to design. Our GRP solver is also complete and universal because it inherits those good properties from original HLLI Riemann solver. We also show how our GRP solver can be adapted to the solution of hyperbolic systems with stiff source terms. Our generalized HLLI Riemann solver is easy to implement and performs robustly and well over a range of test problems. All implementation-related details are presented. Results from several stringent test problems are shown. These test problems are drawn from many different hyperbolic systems, and include hyperbolic systems in conservation form; with non-conservative products; and with stiff source terms. The present generalized Riemann problem solver performs well on all of them.
404 - J.M. Speight 2010
It is shown that the quantum ground state energy of particle of mass m and electric charge e moving on a compact Riemann surface under the influence of a constant magnetic field of strength B is E_0=eB/2m. Remarkably, this formula is completely independent of both the geometry and topology of the Riemann surface. The formula is obtained by reinterpreting the quantum Hamiltonian as the second variation operator of an associated classical variational problem.
104 - Peijie Zhou , Tiejun Li 2016
The uniqueness issue of SDE decomposition theory proposed by Ao and his co-workers has recently been discussed. A comprehensive study to investigate connections among different landscape theories [J. Chem. Phys. 144, 094109 (2016)] has pointed out that the decomposition is generally not unique, while Ao et al. (arXiv:1603.07927v1) argues that such conclusions are incorrect because of the missing boundary conditions. In this comment, we will combine literatures research and concrete examples to show that the concrete and effective boundary conditions have not been proposed to guarantee the uniqueness, hence the arguments in [arXiv:1603.07927v1] are not sufficient. Moreover, we show that the uniqueness of the O-U process decomposition referred by YTA paper is unable to serve as a counterexample to ZLs result since additional assumptions have been made implicitly beyond the original SDE decomposition framework, which cannot be applied to general nonlinear cases. Some other issues such as the failure of gradient expansion method will also be discussed. Our demonstration contributes to better understanding of the relevant papers as well as the SDE decomposition theory.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا