Do you want to publish a course? Click here

Annihilation vs. Decay: Constraining Dark Matter Properties from a Gamma-Ray Detection in Dwarf Galaxies

127   0   0.0 ( 0 )
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Although most proposed dark matter candidates are stable, in order for dark matter to be present today, the only requirement is that its lifetime is longer than the age of the Universe, t_U ~ 4 10^17 s. Moreover, the dark matter particle could be produced via non-thermal processes and have a larger annihilation cross section from the canonical value for thermal dark matter, <sigma v> ~ 3 10^{-26} cm3/s. We propose a strategy to distinguish between dark matter annihilation and/or decay in the case that a clear signal is detected in future gamma-ray observations of Milky Way dwarf galaxies with gamma-ray experiments. The discrimination between these cases would not be possible in the case of the measurement of only the energy spectrum. We show that by studying the dependence of the intensity and energy spectrum on the angular distribution of the signal, the origin of the signal could be identified, and some information about the presence of substructure might be extracted.



rate research

Read More

We revisit the computation of the extragalactic gamma-ray signal from cosmological dark matter annihilations. The prediction of this signal is notoriously model dependent, due to different descriptions of the clumpiness of the dark matter distribution at small scales, responsible for an enhancement with respect to the smoothly distributed case. We show how a direct computation of this flux multiplier in terms of the nonlinear power spectrum offers a conceptually simpler approach and may ease some problems, such as the extrapolation issue. In fact very simple analytical recipes to construct the power spectrum yield results similar to the popular Halo Model expectations, with a straightforward alternative estimate of errors. For this specific application, one also obviates to the need of identifying (often literature-dependent) concepts entering the Halo Model, to compare different simulations.
In the frame of indirect dark matter searches we investigate the flux of high-energy $gamma$-ray photons produced by annihilation of dark matter in caustics within our Galaxy under the hypothesis that the bulk of dark matter is composed of the lightest supersymmetric particles. Unfortunately, the detection of the caustics annihilation signal with currently available instruments is rather challenging. Indeed, with realistic assumptions concerning particle physics and cosmology, the $gamma $-ray signal from caustics is below the detection threshold of both $check {rm C}$erenkov telescopes and satellite-borne experiments. Nevertheless, we find that this signal is more prominent than that expected if annihilation only occurs in the smoothed Galactic halo, with the possible exception of a $sim 15^{circ}$ circle around the Galactic center if the mass density profile of our Galaxy exhibits a sharp cusp there. We show that the angular distribution of this $gamma$-ray flux changes significantly if DM annihilation preferentially occurs within virialized sub-halos populating our Galaxy rather than in caustics.
We provide CTA sensitivities to Dark Matter (DM) annihilation in $gamma$-ray lines, from the observation of the Galactic Center (GC) as well as, for the first time, of dwarf Spheroidal galaxies (dSphs). We compare the GC reach with that of dSphs as a function of a putative core radius of the DM distribution, which is itself poorly known. We find that the currently best dSph candidates constitute a more promising target than the GC, for core radii of one to a few kpc. We use the most recent instrument response functions and background estimations by CTA, on top of which we add the diffuse photon component. Our analysis is of particular interest for TeV-scale electroweak multiplets as DM candidates, such as the supersymmetric Wino and the Minimal Dark Matter fiveplet, whose predictions we compare with our projected sensitivities.
139 - A. Albert , R. Alfaro , C. Alvarez 2017
The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field of view observatory sensitive to 500 GeV - 100 TeV gamma rays and cosmic rays. It can also perform diverse indirect searches for dark matter (DM) annihilation and decay. Among the most promising targets for the indirect detection of dark matter are dwarf spheroidal galaxies. These objects are expected to have few astrophysical sources of gamma rays but high dark matter content, making them ideal candidates for an indirect dark matter detection with gamma rays. Here we present individual limits on the annihilation cross section and decay lifetime for 15 dwarf spheroidal galaxies within the HAWC field-of-view, as well as their combined limit. These are the first limits on the annihilation cross section and decay lifetime using data collected with HAWC.
We re-evaluate the extragalactic gamma-ray flux prediction from dark matter annihilation in the approach of integrating over the nonlinear matter power spectrum, extrapolated to the free-streaming scale. We provide an estimate of the uncertainty based entirely on available N-body simulation results and minimal theoretical assumptions. We illustrate how an improvement in the simulation resolution, exemplified by the comparison between the Millennium and Millennium II simulations, affects our estimate of the flux uncertainty and we provide a best guess value for the flux multiplier, based on the assumption of stable clustering for the dark matter perturbations described as a collision-less fluid. We achieve results comparable to traditional Halo Model calculations, but with a much simpler procedure and a more general approach, as it relies only on one, directly measurable quantity. In addition we discuss the extension of our calculation to include baryonic effects as modeled in hydrodynamical cosmological simulations and other possible sources of uncertainty that would in turn affect indirect dark matter signals. Upper limit on the integrated power spectrum from supernovae lensing magnification are also derived and compared with theoretical expectations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا