Do you want to publish a course? Click here

Comparing parton energy loss models

106   0   0.0 ( 0 )
 Added by Marco van Leeuwen
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

The similarities and differences between three commonly used formalisms for radiative parton energy loss in hot strongly interacting matter are discussed. The single gluon emission spectra are evaluated for a model system consisting of a homogeneous medium with a fixed length, the `TECHQM brick. Sizable quantitative differences are found and the origins of these differences are discussed.



rate research

Read More

Interactions between hard partons and the quark-gluon plasma range from frequent soft interactions to rare hard scatterings. The larger number of soft interactions makes possible an effective stochastic description of parton-plasma interactions in terms of drag and diffusion transport coefficients. In this work, we present a numerical implementation that builds upon this systematic division between soft and hard parton-plasma interactions. We study the dependence of the single parton distribution on the cutoff between soft and hard parton-plasma interactions, both for small and phenomenological values of the strong coupling constant.
96 - M. van Leeuwen 2009
High-pT particle production is suppressed in heavy ion collisions due to parton energy loss in dense QCD matter. Here we present a systematic comparison of two different theoretical approximations to parton energy loss calculations: the opacity expansion and the multiple-soft scattering approximation for the simple case of a quark traversing a homogeneous piece of matter with fixed length (the TECHQM brick problem), with focus on the range of parameters that is relevant for interpreting RHIC measurements of high-pT hadron suppression.
118 - Konrad Tywoniuk 2017
QCD jets, produced copiously in heavy-ion collisions at LHC and also at RHIC, serve as probes of the dynamics of the quark-gluon plasma (QGP). Jet fragmentation in the medium is interesting in its own right and, in order to extract pertinent information about the QGP, it has to be well understood. We present a brief overview of the physics involved and argue that jet substructure observables provide new opportunities for understanding the nature of the modifications.
211 - I. Bouras , A. El , O. Fochler 2010
Quenching of gluonic jets and heavy quark production in Au+Au collisions at RHIC can be understood within the pQCD based 3+1 dimensional parton transport model BAMPS including pQCD bremsstrahlung $2 leftrightarrow 3$ processes. Furthermore, the development of conical structures induced by gluonic jets is investigated in a static box for the regimes of small and large dissipation.
Medium induced parton energy loss is not conclusively established neither in very peripheral heavy-ion collisions nor in proton-ion collisions. However, the standard interpretation of azimuthal momentum anisotropies in theses systems implies some partonic rescattering. The upcoming light-ion runs at the LHC provide a unique opportunity to search for parton energy loss in different systems of similar size. Here, we make predictions for the expected parton energy loss signal in the charged hadron spectra in a system size scan at LHC. We test a large set of model assumptions against the transverse momentum and centrality dependence of the charged hadron nuclear modification factor in lead-lead and xenon-xenon collisions at the LHC. We then attempt to make a model agnostic prediction for the charged hadron nuclear modification factor in oxygen-oxygen collisions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا