Do you want to publish a course? Click here

Hadron properties at finite temperature and density with two-flavor Wilson fermions

276   0   0.0 ( 0 )
 Added by Hideaki Iida
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

Meson properties at finite temperature and density are studied in lattice QCD simulations with two-flavor Wilson fermions. For this purpose, we investigate screening masses of mesons in pseudo-scalar (PS) and vector (V) channels. The simulations are performed on $16^3times 4$ lattice along the lines of constant physics at $m_{rm PS}/m_{rm V}|_{T=0}=0.65$ and 0.80, where $m_{rm PS}/m_{rm V}|_{T=0}$ is a ratio of meson masses in PS and V channels at $T=0$. A temperature range is $T/T_{rm pc}=(0.8 - 4.0)$, where $T_{rm pc}$ is the pseudo-critical temperature. We find that the temperature dependence of the screening masses normalized by temperature, $M_0/T$, shows notable structure around $T_{rm pc}$, and approach $2pi$ at high temperature in both channels, which is consistent with twice the thermal mass of a free quark in high temperature limit. The screening masses at low density are also investigated by using the Taylor expansion method with respect to the quark chemical potential. We find that the expansion coefficients in the leading order become positive in the temperature range, and thermal and density effect on the meson screening-masses becomes apparent in the quark-gluon plasma phase. The meson screening-masses are also compared with the gluon (Debye) screening masses at finite temperature and density.



rate research

Read More

We investigate chemical-potential (mu) dependence of static-quark free energies in both the real and imaginary mu regions, performing lattice QCD simulations at imaginary mu and extrapolating the results to the real mu region with analytic continuation. Lattice QCD calculations are done on a 16^{3}times 4 lattice with the clover-improved two-flavor Wilson fermion action and the renormalization-group improved Iwasaki gauge action. Static-quark potential is evaluated from the Polyakov-loop correlation functions in the deconfinement phase. As the analytic continuation, the potential calculated at imaginary mu=imu_{rm I} is expanded into a Taylor-expansion series of imu_{rm I}/T up to 4th order and the pure imaginary variable imu_{rm I}/T is replaced by the real one mu_{rm R}/T. At real mu, the 4th-order term weakens mu dependence of the potential sizably. At long distance, all of the color singlet and non-singlet potentials tend to twice the single-quark free energy, indicating that the interactions between heavy quarks are fully color-screened for finite mu. For both real and imaginary mu, the color-singlet q{bar q} and the color-antitriplet qq interaction are attractive, whereas the color-octet q{bar q} and the color-sextet qq interaction are repulsive. The attractive interactions have stronger mu/T dependence than the repulsive interactions. The color-Debye screening mass is extracted from the color-singlet potential at imaginary mu, and the mass is extrapolated to real mu by analytic continuation. The screening mass thus obtained has stronger mu dependence than the prediction of the leading-order thermal perturbation theory at both real and imaginary mu.
274 - S. Ejiri , Y. Maezawa , N. Ukita 2009
We study the equation of state at finite temperature and density in two-flavor QCD with the RG-improved gluon action and the clover-improved Wilson quark action on a $ 16^3 times 4$ lattice. Along the lines of constant physics at $m_{rm PS}/m_{rm V} = 0.65$ and 0.80, we compute the second and forth derivatives of the grand canonical partition function with respect to the quark chemical potential $mu_q = (mu_u+mu_d)/2$ and the isospin chemical potential $mu_I = (mu_u-mu_d)/2$ at vanishing chemical potentials, and study the behaviors of thermodynamic quantities at finite $mu_q$ using these derivatives for the case $mu_I=0$. In particular, we study density fluctuations at none-zero temperature and density by calculating the quark number and isospin susceptibilities and their derivatives with respect to $mu_q$. To suppress statistical fluctuations, we also examine new techniques applicable at low densities. We find a large enhancement in the fluctuation of quark number when the density increased near the pseudo-critical temperature, suggesting a critical point at finite $mu_q$ terminating the first order transition line between hadronic and quark gluon plasma phases. This result agrees with the previous results using staggered-type quark actions qualitatively. Furthermore, we study heavy-quark free energies and Debye screening masses at finite density by measuring the first and second derivatives of these quantities for various color channels of heavy quark-quark and quark-anti-quark pairs. The results suggest that, to the leading order of $mu_q$, the interaction between two quarks becomes stronger at finite densities, while that between quark and anti-quark becomes weaker.
110 - T. Umeda , S. Ejiri , R. Iwami 2016
We study the curvature of the chiral transition/crossover line between the low-temperature hadronic phase and the high-temperature quark-gluon-plasma phase at low densities, performing simulations of two-flavor QCD with improved Wilson quarks. After confirming that the chiral order parameter defined by a Ward-Takahashi identity is consistent with the scaling of the O(4) universality class at zero chemical potential, we extend the scaling analysis to finite chemical potential to determine the curvature of the chiral transition/crossover line at low densities assuming the O(4) universality. To convert the curvature in lattice units to that of the $T_c(mu_B)$ in physical units, we evaluate the lattice scale applying a gradient flow method. We find $kappa=0.0006(1)$ in the chiral limit, which is much smaller than that obtained in (2+1)-flavor QCD with improved staggered quarks.
240 - S. Aoki , S. Ejiri , T. Hatsuda 2008
We study the equation of state in two-flavor QCD at finite temperature and density. Simulations are made with the RG-improved gluon action and the clover-improved Wilson quark action. Along the lines of constant physics for $m_{rm PS}/m_{rm V} = 0.65$ and 0.80, we compute the derivatives of the quark determinant with respect to the quark chemical potential $mu_q$ up to the fourth order at $mu_q=0$. We adopt several improvement techniques in the evaluation. We study thermodynamic quantities and quark number susceptibilities at finite $mu_q$ using these derivatives. We find enhancement of the quark number susceptibility at finite $mu_q$, in accordance with previous observations using staggered-type quarks. This suggests the existence of a nearby critical point.
In this letter we report on a numerical investigation of the Aoki phase in the case of finite temperature which continues our former study at zero temperature. We have performed simulations with Wilson fermions at $beta=4.6$ using lattices with temporal extension $N_{tau}=4$. In contrast to the zero temperature case, the existence of an Aoki phase can be confirmed for a small range in $kappa$ at $beta=4.6$, however, shifted slightly to lower $kappa$. Despite fine-tuning $kappa$ we could not separate the thermal transition line from the Aoki phase.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا